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Abstract

Bilevel optimization has emerged as a technique for addressing a wide range of
machine learning problems that involve an outer objective implicitly determined
by the minimizer of an inner problem. While prior works have primarily focused
on the parametric setting, a learning-theoretic foundation for bilevel optimization
in the nonparametric case remains relatively unexplored. In this paper, we take a
first step toward bridging this gap by studying Kernel Bilevel Optimization (KBO),
where the inner objective is optimized over a reproducing kernel Hilbert space.
This setting enables rich function approximation while providing a foundation
for rigorous theoretical analysis. In this context, we derive novel finite-sample
generalization bounds for KBO, leveraging tools from empirical process theory.
These bounds further allow us to assess the statistical accuracy of gradient-based
methods applied to the empirical discretization of KBO. We numerically illustrate
our theoretical findings on a synthetic instrumental variable regression task.

1 Introduction

Bilevel optimization involves a nested structure where one optimization problem, called outer-
level, is constrained by the solution of another one, called inner-level [19]. This formulation has
found applications in a broad spectrum of machine learning fields, including hyperparameter tuning
[43, 13, 28], meta-learning [14, 59], inverse problems [34], and reinforcement learning [35, 48],
making it a powerful tool in theoretical and practical contexts. Its widespread use naturally raises
fundamental questions about the generalization properties of models learned through this procedure
as the number of data samples increases. Several existing works have studied the generalization and
convergence of bilevel algorithms under the assumption that the inner-level problem is strongly convex
and that its parameters lie in a finite-dimensional space. These include analyses of the convergence
of stochastic bilevel optimization algorithms [3, 24, 29, 38] and approaches based on algorithmic
stability [7, 78]. The strong convexity assumption ensures a unique inner-level solution, which
is crucial for stability and convergence analysis in bilevel optimization. Moreover, restricting the
inner-level parameters to a finite-dimensional space instead of possibly richer infinite-dimensional
spaces, as in kernel methods, circumvents additional complexities where the parameter’s dimension
may grow with the sample size. This sample size dependence in nonparametric methods poses
additional challenges as solutions at different sample sizes are not directly comparable. In contrast, in
the finite-dimensional setting, generalization bounds can be derived by quantifying the convergence
of finite-sample estimates of the inner-level solution toward the population solution, i.e., the solution
obtained in the limit of infinite samples within the same parameter space.

Albeit convenient from a theoretical perspective, having both strong convexity and finite-
dimensionality drastically limits models expressiveness, effectively restricting them to linear functions.
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Moving beyond linear models requires either relaxing the strong convexity assumption to accom-
modate more expressive models, such as deep neural networks [30], or considering nonparametric
bilevel problems, where the inner-level variable lies in an expressive infinite-dimensional function
space, such as a Reproducing Kernel Hilbert Space (RKHS) [63]. Early works in bilevel optimization
for machine learning followed the latter approach, developing methods for hyperparameter selection
in kernel-based models [39, 41]. These works leverage the representer theorem [64] to transform the
infinite-dimensional problem into a finite-dimensional one, with dimension depending on the sample
size. However, they do not address how sample size impacts generalization. Another line of research
instead focuses on relaxing the strong convexity assumption, proposing new bilevel algorithms that
can handle the loss of convexity [4, 42, 66]. Yet, non-convex bilevel optimization is a very hard
problem in general [47, 4, 17], and obtaining strong generalization guarantees in this setting remains
out of reach due to the lack of precise control over the inner-level solution. In all cases, learning
theory for bilevel problems beyond the strongly convex parametric setting is essentially lacking.

In the present work, we take an initial step toward developing a learning theory that goes beyond
the finite-dimensional setting. Specifically, we propose to study Kernel Bilevel Optimization (KBO)
problems, where the inner objective L;,, : R? x H — R finds an optimal inner solution h* in an
RKHS H for a given parameter w in R, while the outer objective Lo,; : R? x H — R optimizes the
parameter w over a closed subset C of R4, given the inner solution h}:

min F(w) := Loyt (w, b)) st b)Y =argmin L;, (w, h). (KBO)
wel heH

In particular, we focus on objectives that are expectations of point-wise losses, a common setting in
learning theory. RKHS provides a natural framework to study learning-theoretic arguments, and has
been instrumental for many fruitful results in pattern recognition and machine learning. They allow to
describe very expressive non-linear models with simple and stable algorithms, while enabling a rich
statistical analysis and featuring adaptivity to the regularity of the population problem [65, 63, 33].
Our choice is also motivated by the relevance of kernel methods, even in the deep learning era.
They remain competitive for some prediction problems, such as those involving physics [26, 44].
Additionally, the mathematics of kernel methods are useful to describe the limiting behavior of
deep network training for very large models [37, 11]. In this limit, the problem becomes (strongly)
convex in an infinite-dimensional function space, simplifying the difficulties of non-convex model
parameterizations, a major bottleneck in the analysis of such models. This point of view was leveraged
by Petrulionyté et al. [58] who introduced functional bilevel optimization, and our setting can be seen
as a special case for which the underlying function space is an RKHS. From a practical perspective,
our setting is amenable to first-order methods using implicit differentiation techniques [31, 6, 15].

Contributions. We leverage empirical process theory and its extension to U-processes [67] to derive
uniform generalization bounds for the value function of (KBO), quantifying the discrepancy between

F and its plug-in estimator F in terms of both their values and gradients. Classical empirical process
results [72] are not directly applicable here, as the functional setting involves processes that take
values in an infinite-dimensional space rather than being real-valued. This motivates our use of
U-process results, a novel technique which has not been employed before in the analysis of finite-
dimensional problems. The control in terms of gradients is crucial to study first-order optimization

methods, since F is typically non-convex and iterative methods seek to find approximate critical

points where ||V.F|| is small. Our result relies on an equivalence we establish between V.F and a
plug-in statistical estimate of VF that is more amenable to a statistical analysis. We then use our
uniform bounds to provide generalization guarantees for gradient descent and projected gradient

descent applied to F. Under specific assumptions, we show convergence rates for sub-optimality
measures that depend on the sample sizes and the number of algorithmic iterations. This illustrates
the practical relevance of our generalization bounds on simple bilevel algorithms. For a large number
of steps, gradient algorithms applied to the empirical (KBO) find approximate critical points of the
population (KBO) up to a statistical error which we control.

Organization of the paper. In Section 2, we describe (KBO), give two application examples, and
explain implicit differentiation in an RKHS. In Section 3, we present the empirical (KBO) and state
our first main result on the gradient of its value function. Section 4 provides uniform generalization
bounds for (KBO), with applications to bilevel gradient methods, as well as a sketch of the proof
of our main result. Finally, in Section 5, we illustrate our theoretical findings with experiments on
synthetic data for the instrumental variable regression problem.



2 Kernel bilevel optimization

2.1 Problem formulation

We consider the (KBO) problem with an RKHS H, which is a space of real-valued functions defined
on a Borel input space X C RP and associated with a reproducing kernel K : X x X — R. We
are interested, in particular, in (regularized) objectives expressed as expectations of point-wise loss
functions, a formulation widely adopted in machine learning as it allows the loss functions to represent
the average performance over some data distribution. Specifically, given two probability distributions
P and Q supported on X x ) for some target space J C RY, we consider objectives of the form:

Lout(w, h) = Eq [lout(w, M(2),y)];  Lin(w, h) = Ep [lin(w, h(2),y)] + thII%,

where ¢;,, and {oy; : R x R x R? — R represent the inner and outer point-wise loss functions,
A > 0 is the regularization parameter which is fixed through this work, and || - ||3; denotes the norm
in the RKHS #. The regularization term in L;,, is often used in practice to prevent overfitting by
penalizing overly complex models. In our setting, it ensures strong convexity of A — L, (w, h)
under mild assumptions on ¢;,,, which will be critical to leverage functional implicit differentiation.

Assumptions. Through the paper, we make the following five assumptions to derive generalization
bounds while retaining a simple and modular presentation.

(A) (Measurability of K). K is measurable on X x X.
(B) (Boundedness of K). There exists a constant x > 0 such that K (z,z) < , for any x € X.
(C) (Compactness of )). The subset ) of R? is compact.

(D) (Regularity of ¢;,, and £,,;). The functions ¢;,, and ,,,; are of class C* jointly in their first two
arguments (w, v), and their derivatives are jointly continuous in (w, v, y).

(E) (Convexity of £;,,). For any (w,y) € R% x RY, the map v + £;,, (w, v, y) is convex.

Assumptions (A) and (B) on K hold for a wide class of kernels, such as the Gaussian, Laplacian, and
Matérn [61] kernels. They also hold if K is a Mercer kernel [50], i.e., a continuous, positive-definite
kernel on a compact domain X. For instance, a kernel built using neural network features, e.g.,
neural tangent kernel [37], satisfies these assumptions on the space of images, which is compact
since the pixel values have a bounded range. Assumption (C) on ) is a mild assumption that holds
in most supervised learning applications, such as classification where ) is finite, or cases where
Y = [0,1]4, enabling the representation of complex data, like images. Assumption (D) on the
point-wise objectives is a mild regularity assumption, which is met for the most commonly used loss
functions in practice, including the squared loss, logistic loss, cross-entropy loss, and KL divergence.
Finally, Assumption (E) is essential to ensure the existence and uniqueness of a smooth minimizer
hZ,. It is a relatively weak assumption that was recently considered in [58] in the context of functional
bilevel optimization, and that holds in many cases of interest, as discussed in Section 2.2.

Remark 2.1. Assumptions (B) to (D) can be relaxed at the expense of weaker yet more technical
assumptions, such as finite moment assumptions on P and Q, and suitable polynomial growth of the
kernel and some partial derivatives of ¢;,, and £,,;. It is also sufficient to require that Assumption (D)
holds on & x R x R? where { is an open neighborhood of C, and that Assumption (E) holds for any
w € C and y € V. We prefer to keep these stronger yet simpler assumptions for clarity.

2.2 Examples of (KBO) in machine learning

To illustrate the relevance of (KBO), we consider two examples that highlight its applicability.

Hyperparameter selection under distribution shift. In this application, the aim is to select the best
hyperparameters for a machine learning model, e.g., regularization parameters, while accounting for
distribution shift between the training and test data, i.e., when the training and test data distributions
Dirain and Dy, are different [57, 28]. This can be viewed as an instance of (KBO) when using models
in an RKHS. At the inner-level, the model A is trained to minimize the regularized training squared
error loss, with the hyperparameter w > 0 representing the weight for the data fitting term. At the
outer-level, the task is to select the hyperparameter w that maximizes the model’s performance on the



distribution-shifted test data. Both inner and outer objectives can thus be formulated as:

1 2 w 2] | A2
Lout(wvh) = iE(z,y)Nch,, |:|h(.1‘) - y| } ) Lin<w>h) = §E(m,y)~Dmin “h(m) - yl } + 5 ”hHH

This formulation could be used for domain adaptation [12] or domain generalization [73] to choose
hyperparameters that perform well on the distribution-shifted test data.

Instrumental variable regression. It is a technique used to address endogeneity in statistical
modeling by leveraging instruments to estimate causal relationships [53]. The goal is to estimate
a function ¢ — f,(t) parameterized by a vector w, that satisfies y = f,,(t) + ¢, where y € R
is the observed outcome, ¢ is the treatment, and € is the error term. The key issue is that ¢ is
endogenous, which means that it is correlated with €, making direct regression inconsistent. Indeed,
such correlation leads to biased estimates of f,,(t) as the assumption of exogeneity, i.e., independence
of t and ¢, is violated. To resolve this, one can use an instrumental variable x, uncorrelated with e but
correlated with ¢, to recover the relationship between y and ¢ without being directly affected by the
bias introduced by e, typically via two-stage least squares regression [68, 51]. As shown in [58], this
approach can be naturally expressed as a bilevel problem with inner and outer objectives of the form:

1 1 A
Lout(w,h) = 5Euy [I0(@) = 4] Lin(w, ) = 3B [[h(z) = fu®)F] + 5 1013,

where h can be chosen to be in an RKHS to allow flexibility in the estimation while retaining
uniqueness of the solution A}, a key property in bilevel optimization.

2.3 Implicit differentiation in an RKHS

A stationarity measure in (KBO) is the gradient V.7 (w) of the value function F. Computing this
gradient, however, is challenging and will be addressed in this section. At a high level, our approach
proceeds in two steps. First, we derive an abstract, a priori intractable, expression for V. (w) using
implicit differentiation in an RKHS, which is the main source of difficulty. Then, we leverage
the structure of our problem to reformulate the gradient in Proposition 2.2 using the solution of
a regression problem in the RKHS (the adjoint problem). This more concrete formulation can be
approximated with finite samples and will later serve as the foundation of our statistical analysis.
Formally, evaluating the gradient requires computing the Jacobian 0,,h},, which can be viewed as a
linear operator from A to R¢. Indeed, h, depends implicitly on w. A key ingredient for computing
Ouh}, is the implicit function theorem [36], which guarantees the differentiability of the implicit
function w +— A}, and allows characterizing J,,h, as the unigue solution of a linear system of the
form:

92 Lin(w, b)) + 005 Lin (w, ) = 0, (1)
where 6‘,%Lm (w, ) is an operator from H to itself representing the Hessian of L;, w.r.t. h, while
837 nLin(w, b)) is an operator from H to R4 representing the cross derivatives of L;, w.r.t. to w
and h. Applying such result requires h +— L;,(w, h) to be Fréchet differentiable with invertible
Hessian operator and jointly Fréchet differentiable gradient map (w, ) — 9y Lin (w, h). All these
properties are satisfied in our setting under Assumptions (A) to (E) as shown in Propositions B.1
to B.3 of Appendix B.1. Furthermore, when L, is Fréchet differentiable, which is our case under
Assumptions (A) to (D) (Proposition B.1 of Appendix B.1), then by composition with w +— (w, h},),
the map w — F(w) must also be differentiable with gradient obtained using the chain rule:

VF(w) = 0w Loyt (w, h) + 0uh 00 Loyt (w, h5).
The above expression for the gradient is intractable as it involves abstract operators, namely the
derivatives d,, 0;,, and 92 ,,, the last two of which arise when replacing 9,7, by its expression in

Equation (1). In Proposition 2.2 below, we derive an explicit expression for V.7 (w) which exploits
the particular structure of the objectives L;,, and L, as expectations of point-wise losses.

Proposition 2.2 (Expression of the total gradient). Under Assumptions (A) to (E), F is differentiable
on R?, with gradient V F (w), for any w € RY, given by:

VF(w) = Eq [0ulout(w, b, (2), )] + Ep [02  lin(w, hiy (2), y)ag, ()], ()
where the adjoint function a, € H is the unique minimizer of a strongly convex quadratic objective
a > Logj(w, a) defined on H as:

1 A
Lagj(@.0) = 5Bz [05tin (0. 15 (2),9) a*(@)] + Eq [0ulout (w, h(2), y) al@)] + 5 al . (3)



where O,L oy and Oyloys are the first-order partial derivatives of £y W.r.t. w and v, while afw&n
and 92(;,, denote the second-order partial derivatives of {;, w.r.t. w and v.

Proposition 2.2 is proved in Appendix B and relies essentially on proving Bochner’s integrability [25,
Definition 1, Chapter 2] of some suitable operators on H, and then applying Lebesgue’s dominated
convergence theorem for Bochner’s integral [25, Theorem 3, Chapter 2] to interchange derivatives
and expectations. The expression in Proposition 2.2 provides a natural way for approximating V.F (w)
by estimating all expectations using finite-sample averages, as we further discuss in Section 3.

3 Finite-sample approximation of (KBO)

In this section, we consider an approximation of (KBO)
when only a finite number of i.i.d. samples (z;, y;)1<i<n F

Plug-in estimation ~ ~
F

and (Z;,7;j)1<j<m from PP and Q are available. This set- )
ting is ubiquitous in machine learning as it allows finding ~ V: diff Vv diff
tractable approximate solutions to the original problem. As ~

we are interested in approximately solving (KBO) using VF Plug-in estimation

gradient methods, our focus here is to derive estimators

for both the value function F(w) and its gradient VF (w), Figure I: A commutative diagram illus-
whose generalization properties will be studied in Section 4. trating that plug-in statistical estimation
and differentiation can be interchanged

for 7 and 7 resulting in a single gradi-
ent estimator.

In Section 3.1, we follow a commonly used approach of
first deriving a plug-in estimator F of the value function,

then considering its gradient V.7 (w) as an approximation
to V.F(w). In Section 3.2, we show that this approximation is equivalent to a second estimator, more
amenable to a statistical analysis, obtained by directly computing a plug-in estimator of V.F based
on its expression in Equation (2). Figure 1 summarizes such equivalence.

3.1 Value function: plug-in estimator and its gradient

A natural approach for finding approximate solutions to (KBO) is to consider an approximate problem
obtained after replacing the objectives L;,, and L, by their empirical approximations L;,, and L;:
m n

~ ~ 1 A
Lout w, h Zgout w, h xj )7 Lin (wvh) = Ezéin(wah(xi)vyi) + EHh”?—[

i=1

A plug-in estimator w +— F (w) is then obtained by first finding a solution hes minimizing h +—
L;n(w, h), that is meant to approximate the optimal inner solution k%, and subsequently plugging it
into L. This procedure results in the following empirical version of (KBO):

minﬁ(w) = Eout(w, iLw) st. hy, = arg min Em (w,h).

wel heH
The inner problem still requires optimizing over a, potentially infinite-dimensional, RKHS. However,
its finite-sum structure allows equivalently expressing it as a finite-dimensional bilevel optimization,
by application of the so-called representer theorem [64]:

i P = 13 b (K,

wel o
(KBO)

I A
s.t. 'yw—argmm—z&n K7)z,yz)+2fy K~.
vER™ i=1
Here, K € R"*" and K € R™*" are matrices containing the pairwise kernel similarities between the
data points, i.e., K;; = K(z;,2;) and K;; .= K(&;, x;), while - is a parameter vector in R™ repre-
senting the inner-level variables. The optimal solution 4, enables recovering the prediction function
h., by linearly combining kernel evaluations at inner-level samples, i.e., hy, = > .| (¥,,)i K (4, ).
The formulation in (KBO) enables deriving an expression for the gradient VF (w) in terms of



the Jacobian 0,7, by direct application of the chain rule. Unlike d,,h,, which requires solving
the infinite-dimensional linear system in Equation (1), d,,%,, can be obtained by solving a finite-
dimensional linear system using the implicit function theorem (see Proposition C.1 of Appendix C).
Hence, (K/B\O) falls into a class of optimization problems for which a rich body of literature has
pro/p\osed practical and scalable algorithms, leveraging the expression of VF (w) [38, 3, 24]. Solving

(KBO) thus provides a practical way to approximate the solution of the original population problem
(KBO), as proposed by several prior works on bilevel optimization involving kernel methods [39, 41].

Non-applicability of existing results. Despite its practical advantages, the above approach yields
algorithms that are not directly amenable to a statistical analysis. The key challenge is to be able
to control the approximation error between the true gradient V.F(w) and its approximation V.F(w)
as the sample sizes n and m increase. Existing statistical analyses for bilevel optimization, such as
[7, 78], consider objectives that are expectations or finite sums of point-wise losses, as we do here.
While these results can be applied to our setting for each fixed n, they do not capture the generalization
behavior as n grows. In particular, they require both the inner- and outer-level parameters to lie
in spaces of fixed dimensions, that are independent of n and m. That is because these parameters
are expected to converge to some fixed vectors as n,m — +oco. In contrast, in our setting, the
inner-level parameter -y lies in R™, so its dimension grows with n and is not expected to converge to
any well-defined object. Existing non-kernel generalization bounds are discussed in Appendix A.

Relation to instrumental variable regression. Our formulation is related to instrumental variable
regression, which is a special case, but differs in that we study regularized inner problems with a
fixed ), independent of the sample sizes. In contrast, the instrumental variable regression literature
typically considers un-regularized population problems (A = 0), for which a closed-form expression
of the inner minimizer is available [32, 68, 76, 45]. Our contribution lies in an orthogonal direction:
we handle more general inner objectives, for which even the analysis of regularized problems
raises new obstacles that had not been tackled before. Moreover, some prior works have provided
convergence rates in the instrumental variable regression setting [1, 2, 22, 23]. Yet, these studies
focus on asymptotic results with sieve estimators, meanwhile we leverage the RKHS structure to
provide finite-sample bounds. More recently, Meunier et al. [51] established minimax optimal rates
under source assumptions by exploiting bounds for vector-valued kernel ridge regression [46] via a
spectral filtering technique [52]. However, this approach is not applicable to our case, as it requires
the losses to be quadratic in w, as further discussed in Appendix A.

Next, we provide an equivalent expression for VF (w) that will be crucial in our statistical study in
Section 4.

3.2 Plug-in estimator of the total gradient

We now consider an a priori different approach for approximating the total gradient V.F(w) based
on direct plug-in estimation from Equation (2), and show that it recovers the previously introduced

estimator V.F (w). Such approach consists in replacing all expectations in Equation (2) by empirical

averages, then replacing hY, and a}, by their finite-sample estimates h,, and a,,. This yields the
following estimator of the total gradient:

Za Eout UJ h Z lin W h ( )ﬂyz)dw(xz) 4)

Just as in Section 3.1, h}, can be estimated by h.,, the minimizer of the empirical objective h —
Lin(w, k). Similarly, a’, can be approximated by a,,, the minimizer of a — Lqgj(w, a) defined as:

~

1 « PP
Lagj(w, a) 282 in(w, hes (@i), yi)a (xz)+ Ezavgout(w’ he(Z5), §;)a(Z;) + 5”““3—17

j=1

&)
which serves as the empirical counterpart of the adjoint objective Lq; given in Equation (3). Both
functions h,, and a,, can be expressed as linear combinations of kernel evaluations with some given

parameter vectors whose dimensions increase with the sample size n (see Proposition C.1 for hy, and
Lemma C.2 for a,,, both in Appendix C). However, these parameters are not required to compute the



plug-in estimator ﬁ—'(w) in Equation (4), since only the function values of h,, and a,, are needed.
This property is precisely what makes ﬁ:(w) suitable for a statistical analysis. Indeed, its estimation
error depends on the approximation errors of h,, and d,,, which always belong to the same space
‘H regardless of the sample size, and are expected to approach their population counterparts. This
contrasts with VF (w) obtained by implicit differentiation, whose analysis would need controlling
the behavior of the vector 4, that resides in a growing-dimensional space as n — +00.

The next proposition establishes a link between practical applications and theoretical analysis by
demonstrating that, surprisingly, both estimators V.F (w) and V.F(w) are precisely equal.

Proposition 3.1. Under Assumptions (A) to (E), the gradient V.F (w) of the plug-in estimator F (w)

of F(w) defined in (KBO) is equal to the plug-in estimator ﬁ(w) of the total gradient V. JF(w)
introduced in Equation (4).

Proposition 3.1 is proved in Appendix C and relies on an application of the representer theorem [64] to
provide explicit expressions for both estimators in terms of 4, kernel matrices K and K and partial
derivatives of the point-wise objectives ¢;,, and ¢,,;. Both expressions are then shown to be equal
using optimality conditions on the parameters defining a,,. The result in Proposition 3.1 precisely
says that the operations of differentiation and plug-in estimation commute in the case of (KBO).
Such a commutativity property does not necessarily hold anymore if one considers spaces other than
an RKHS, such as L, [58, Appendix F]. The main difficulty arises from the argmin constraint and
the use of implicit differentiation, which may introduce non-linear dependencies between inner- and
outer-level variables, making the exchange of differentiation and discretization nontrivial. Next, we

leverage the expression of the plug-in estimator V.F(w) to provide generalization bounds.

4 Generalization bounds for (KBO)

In this section, we present our main result: a maximal inequality that controls how well both F and
V F are approximated by their empirical counterparts, uniformly over a compact subset §2 of R?.

4.1 Maximal inequalities for (KBO)

The following theorem provides finite-sample bounds on the uniform approximation errors on the
objective and its gradient in expectation over both inner- and outer-level samples.

Theorem 4.1 (Maximal inequalities). Fix any compact subset Q2 of R%. Under Assumptions (A)
to (E), the following maximal inequalities hold:

B |sup | 7o) - Flu| <

we

1 1 = 1
C ( + ) [sup HV]-‘ V]-'(w)H] <C ( + )
vm \/ﬁ wEeN vm f
where the expectation is taken over the finite samples, and C' is a constant that depends only on (),
the dimension d, the regularization parameter \, k, and local upper bounds on €;y, £y, and their
partial derivatives over suitable compact sets.

Theorem 4.1 states that the estimation error can be decomposed into two contributions each resulting
from finite-sample approximation of L;,, and L,; with a parametric rate of 1//m and /\/n up to a
constant factor C'. We provide a detailed expression for the constant in Theorem E.7 of Appendix E.
The restriction to a compact subset €2 instead of the whole space R? allows controlling the complexity
of some function classes indexed by the parameter w. Without further assumptions on the objectives,
we obtain a constant C' that grows with the diameter of the subset 2.

Role of \. The regularization parameter A\ simultaneously controls the strong convexity of the inner
objective (see Proposition B.3 of Appendix B.1), the boundedness and Lipschitz continuity of the
inner solutions (see Appendix D.1), the smoothness of the outer objective (see Proposition D.4 of

Appendix D.2), the modulus of continuity of L;,, Lm, Lout, Lout and their partial derivatives (see
Appendix E.1), and maximal inequalities for certain processes (see Appendix E.2). Larger values of
A yield smoother problems that are faster to optimize with larger step sizes, but introduce a larger
statistical bias, while smaller values of A reduce bias but make optimization and generalization more
delicate, with the error tending to +00 as A — 0. Under our assumptions, we are not able to quantify



the exact dependence of the constants on A, and thus cannot provide generalization guarantees as
A — 0. This is because some terms in the constants have only a qualitative dependence on .
Selecting A therefore involves a trade-off between bias (regularized vs un-regularized problems),
variance (finite sample vs population, as done in our study), and optimization efficiency (step size).

Probabilistic and variance bounds. The most difficult quantity to control is the expectation of the
maximal differences, which we have established. Once this expectation is bounded, a high-probability
bound on the maximal differences can be derived via Markov’s inequality. Moreover, since these
differences are bounded (see Proposition E.4), we can also bound their variance. Indeed, let Z € [0, z]
be a random variable representing the maximal difference between F or VF and their respective
plug-in estimators. Then, Var(Z/z) < E[(Z/z)?] < E[Z/z], which implies that Var(Z) < zE[Z].

We outline the general proof strategy for Theorem 4.1 in the following section, with a full proof
provided in Appendix E.

4.2 General proof strategy for Theorem 4.1

The main strategy behind the proof of Theorem 4.1 in Appendix E consists of three steps: (step
1) obtaining a point-wise error decomposition of the errors into manageable error terms that holds
almost surely for any w € €2, then applying maximal inequalities to suitable empirical processes (step
2) and some degenerate UU-processes (step 3) to control each of these terms. The final error bounds
are obtained by combining all these bounds as shown in Appendix E.3.

Step 1: point-wise error decomposition. A main challenge in controlling the errors in Theorem 4.1 is

the non-linear dependence of both estimators J (w) and VF(w) on the empirical distributions, as they
are obtained via a plug-in procedure. We address this by breaking down the errors into components
based on the discrepancies between expected values and their empirical counterparts of individual
point-wise losses and their derivatives, all evaluated at the optimal solution A},. Specifically, we denote

~

by 424t and 6" the errors on the objectives defined as 69! := | Lyt (w, %) — Lout(w, hY)| and
8" = |Lipn(w, %) — Lin(w, h%)|. Moreover, we quantify the errors between the partial derivatives

of these objectives and their empirical counterparts. To simplify our proof outline, we slightly abuse
notation by denoting 9),02*t, 956", 8,,02*t, 52 , 8¢, and 924" to refer to these errors in terms of

partial derivatives. For instance, 0),62%" is defined as ||, Lout (w, h5) — O Lowt (w, hY)||3. with
similar definitions for the other terms (see Appendix E.1). We get | F(w) — F(w)| < C (624 + 9, 5i™)
and [|[VF(w) — VF(W)|| < C(9.034 + 8,034 + 9282 + 02,05 + 9,827"). Proposition E.4
formalizes this step and includes the exact constants. The error terms in both decompositions are
amenable to a statistical analysis using empirical process theory as we discuss next.

Step 2: maximal inequalities for empirical processes. Some of the error terms, namely §2“* and
0,024, can be controlled directly using empirical process theory. For example, 6°“ is associated to

the family of random functions /m( Loy (w, b)) — Lout(w, hY))weq, wWhich defines an empirical
process, a scaled and centered empirical average of real-valued functions indexed by the parameter
w. Thus, provided that suitable estimates of the class complexity are available (as measured by its
packing number in Proposition F.1 of Appendix F), which are easy to obtain in our setting, we show
in Proposition E.5 of Appendix E.2 that a maximal inequality of the following form follows from
classical results on empirical processes: Eq [sup,,cq 05*] < €/ym.

Step 3: maximal inequalities for degenerate U-processes. Step 2 cannot be readily applied to the
remaining terms involving partial derivatives w.r.t. h (9,02%, 9,0, 02 .01, 026i") =: Dy,. These
are associated to processes that are not real-valued anymore, but take values in an infinite-dimensional
space. In fact, one could apply step 2 to get an error per dimension, but then summing the errors yields
a divergent sum. While the recent work in [56] develops an empirical process theory for functions
taking values in a vector space, the provided complexity estimates would result in an unfavorable
dependence on the sample size. Instead, we leverage the structure of the RKHS to control these errors
using maximal inequalities for suitable degenerate U-processes of order 2 indexed by the parameter
w and for which such inequalities were provided in the seminal works of Sherman [67], Nolan and
Pollard [54]. U-processes of order 2 are generalization of empirical processes and involve empirical
averages of real-valued functions which depend on pairs of samples, instead of a single one as in
empirical processes. In our case, these functions arise when taking the square of any term in Dy, and
exploiting the reproducing property of the RKHS. This approach, presented in Proposition E.6 of



Appendix E.2, allows us to obtain maximal inequalities for the terms in D;,. For example, it is of the
following form for 9,62"": Eq [sup,,cq Ond5""| < €//m. Combining the maximal inequalities from
steps 2 and 3 with the error decomposition from step 1 allows to obtain the result of Theorem 4.1.

Discussion. Alternative approaches to U-processes could be used to derive generalization bounds,
although these would result in a degraded sample dependence. Specifically, one could employ a
variational formulation of the RKHS norm appearing in some of the error terms, such as 9,62, to
express them as the error of some real-valued empirical process to which standard results could be
applied. However, this comes at the cost of considering processes indexed not only by the finite-
dimensional parameter w, but also by functions in the unit RKHS ball. As a result, these families
have much larger complexities as measured by their covering/packing numbers [77, Lemma D.2],
which directly impacts the generalization rate. In contrast, our proposed approach bypasses this
challenge by using real-valued U -processes indexed by finite-dimensional parameters, at the expense
of employing a more general empirical process theory for degenerate U-processes [67].

To illustrate the implications of Theorem 4.1, we next provide convergence results for bilevel gradient
methods.

4.3 Applications to empirical bilevel gradient methods

A typical strategy to solve (KBO) is to obtain empirical samples and apply a bilevel optimization

algorithm to (KBO), for which our results offer statistical guarantees. Below, we present the
generalization error for bilevel gradient descent. Generalization results for the projected bilevel
gradient descent are directed to Appendix E.4.

Bilevel gradient descent. It is the simplest gradient-based method for solving the unconstrained
(KBO) problem, i.e., when C = R 1t performs the update w1 = w; — nV]? (wy) for all ¢ > 0,
where 17 > 0 is the step size. The algorithm requires access to the strongly convex inner-level solution
and its derivative, which can be obtained using implicit differentiation.

Corollary 4.2 (Generalization for bilevel gradient descent). Consider Assumptions (A) to (E) and
fix A > 0. Assume further that K in (K/B\O) is almost surely definite, and that there exists ¢ > 0
such that inf, , y Lout(w,v,y) — c||lwl||? > —oo. Fixwy € RY and let wy 41 = wy — NV F(wy) for all
t > 0, where n > 0 is the step size. Then, there exist constants j > 0 and ¢ > 0 such that for any
0 <n < mnanyt >0, the following holds:

B[ in V7@l <o (=4 oo+~ ) Bfimsw [Vl ] <=+ )

The additional assumption on ¢,,; serves as a device to ensure the almost sure boundedness of
the sequence a priori. It is rather mild, as it can be enforced by a small perturbation of the form
(w,v,Y) = Lowt(w,v,y) + c||wl||?, assuming £,,; > 0, which is typical in applications. Any other
device that ensures a priori boundedness could also be considered. The assumption on K is satisfied
almost surely for most commonly used kernels. The proof of Corollary 4.2 follows from Theorem 4.1
and can be found in Appendix E.4. Corollary 4.2 also highlights a key algorithmic insight: the
convergence of the bilevel method requires striking a balance between data availability (sample sizes
n and m) and computational budget (number of gradient steps). This trade-off arises because the total
convergence error combines a statistical component, due to approximating the population gradient
from finite samples, and an optimization component, due to performing only a limited number of
(projected) gradient steps. Ensuring the right balance when designing practical algorithms prevents
either insufficient data or limited computation from dominating the overall error.

5 Numerical experiments

Setup. To empirically validate our theoretical results, we consider the instrumental variable regression
problem discussed in Section 2.2, in which we assume a linear dependence on w for the function f,,
of the form f,,(t) = w' ¢(t), where ¢(t) € R denotes the feature map. We chose this particular
problem because it allows us to derive closed-form expressions of the exact value function and
its gradient, as well as their plug-in estimators, which are detailed in Appendix 1.2. We use the
Gaussian kernel and follow the experimental setup of Singh et al. [68], generating synthetic data



that remain fixed across all runs. We vary n between 100 and 5,000, setting m = n. The case
n # m is analyzed separately in Appendix 1.5. For the instrumental variable x, we consider two
distributions: a p-dimensional standard Gaussian and a p-dimensional Student’s ¢-distribution with
degrees of freedom v € {2.1,2.5,2.9}. Further details on the experimental setup are provided in

Appendix [.4. We optimize the outer loss in (K/B\O) using gradient descent, where the step size is
selected using backtracking line search and wy is randomly drawn from ¢/(0, 1)?. The stopping

criterion is when |[V.F(w;)|| < 1077, where i is the iteration index. Our code is available at
https://github.com/fareselkhoury/KBO.

Scalable approximations for 7 and V _F. Since the expressions of F and V.F involve expectations,
they are intractable to compute exactly. We approximate them accurately using their plug-in estimators

F and VF, derived in Appendix 1.2, and evaluate them using a large number of samples. To make
this computation scalable, we approximate the kernel using a random Fourier features approximation
[60], as detailed in Appendix 1.3. Specifically, we use 1,000,000 samples and 26,000 random features,
and handle memory constraints via a block decomposition strategy with a block size of 1,000.

Results. The plots in Figure 2 show the generalization behavior as a function of the number of inner
samples n. (a) and (b) display the generalization error at initialization for the value function and the
gradient, respectively. (c) presents the generalization bound for the gradient norm at the final iteration,
while (d) shows the bound for the minimum gradient norm across all iterations. These results align
with our theoretical findings, as all curves closely follow the expected theoretical slope. Additionally,
Figure 3 of Appendix 1.5 shows that balanced sample sizes lead to improved optimization behavior.

(a) (c) (d)

|IVF(wo) — VF(wo)|

min_[|VF(w;)||

IVF(wn)|
T

[F(wo) — Flwo)|

i

10° 10? 10° 10? 10°

-
o
©

n n n
—— Gaussian kernel =~ --- Theoretical slope
I Gaussian dist B Student dist (v =2.1) I Student dist (v =2.5) Student dist (v =2.9)

Figure 2: Illustration of gradient descent on (I@)) for the instrumental variable regression task
using synthetic data. The plots are averaged over 50 runs and displayed on a log-log scale. The line
represents the mean across all runs, and the shaded region indicates the 95% confidence interval.

6 Conclusion and perspectives

Summary. In this work, we established the first generalization bounds for (KBO). These results are
crucial for understanding the generalization properties of algorithms for solving (KBO). They offer
rigorous guarantees on the algorithm’s performance on unseen data—a fundamental criterion for any
algorithmic design—and help control overfitting. Given that our bounds are of order O(1/ym+1/yn),
this highlights the equal importance of both outer- and inner-level sample sizes to the overall
generalization error. Our findings can impact current practices, particularly in hyperparameter
optimization, where the validation dataset is typically much smaller than the training set.

Limitations and future work. This paper takes a first step toward providing generalization results
for bilevel gradient-based methods in a nonparametric setting. While our theoretical analysis focused
on a full-batch bilevel setting with exact gradients, extending this framework to stochastic variants,
such as those in [3, 29, 21, 24], remains an open challenge. A promising direction would be to
consider approximate kernel representations, such as random Fourier features or neural tangent
kernels, which enable scalable learning using kernel methods while preserving useful theoretical
properties. Furthermore, the constants in our bounds are likely conservative; we did not investigate
their tightness or potential for improvement. A deeper analysis of their optimality could provide
valuable insights and constitutes an avenue worth exploring. Additionally, providing generalization
guarantees for the un-regularized problem, possibly in the form of minimax optimal rates for (KBO),
is a worthwhile future direction. This requires controlling the constants as A — 0, provided additional
source assumptions are made, as discussed in [69, 70]. Finally, broadening our framework to cover
non-smooth losses, such as the hinge loss in SVMs, is an interesting direction for future work.
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Appendices

Roadmap. In Appendix A, we review existing non-kernel generalization bounds in the bilevel
optimization literature and explain why minimax optimal rates cannot be obtained in our setting. We
begin the theoretical appendices by presenting and establishing regularity properties of the objective
functions in Appendix B. In Appendix C, we introduce the gradient estimators. Appendix D is
dedicated to proving the boundedness and Lipschitz continuity of Y, and h,,, along with local
boundedness and Lipschitz properties of ¢;,,, £,,:, and their derivatives. The generalization results are
provided in Appendix E. In Appendix F, we establish maximal inequalities for bounded and Lipschitz
families of functions. Differentiability properties of the objectives are studied in Appendix G.
Appendix H contains auxiliary technical lemmas used throughout the proofs. Finally, further details
on the experiments and additional numerical results are provided in Appendix I.

Notations. | - || denotes the Euclidean norm in R, || - ||, denotes the norm in the RKHS #, || - ||op
denotes the operator norm, and || - ||gs denotes the Hilbert-Schmidt norm. (-, -)3; denotes the inner
product on H, and (-, -)gs denotes the Hilbert-Schmidt inner product. K (x,-) denotes the feature
map, for any 2 € X. For any two normed spaces E and F, L(E, F) denotes the space of continuous
linear operators from E to F'. For any two probability distributions P and Q, P ® Q denotes the
product measure of P and Q. Given two Hilbert spaces (Hq, (-, -) g, ) and (Ha, (-, -) i, ), the tensor
product of w € Hy and v € Hs, denoted by u ® v, is an operator from H to H; defined, for any
e € Hy, as (u®wv)e = u(v,e)y, . Forany vy,...,v, € R, diag(vi,...,v,) € R"*" denotes a
diagonal matrix of size n x n, where the diagonal entries are vy, ..., v, and all the off-diagonal
entries are 0. 1,, denotes a vector of size m where all entries are 1. 1,,, denotes the identity
matrix of size n. For any vector space V over R, Idy denotes the identity operator on V. Given a
compact set K, diam(/C) denotes its diameter. v denotes the transpose of either a vector or a matrix,
depending on the context.
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A Further Discussion

Existing generalization bounds for the non-kernel case. Bao et al. [7] laid foundational work
towards understanding generalization in bilevel optimization by analyzing uniform stability in full-
batch bilevel optimization. Their generalization criterion compares the population outer loss evaluated
at the output of a randomized algorithm to the empirical outer loss evaluated using the same algorithm.
Given a number « between 0 and 1, they obtain a decay at a rate of O(7"/m) for unrolled optimization,
which decreases as 1/m in outer sample size, but increases with the number of outer iterations T
made. This criterion differs from ours, which instead compares the population outer objective at
the theoretically optimal inner solution i}, to the empirical loss evaluated at the empirical solution
he. Complementing this upper bound, Wang et al. [74] established lower bounds on the uniform
stability of gradient-based bilevel algorithms, demonstrating a rate of {2(1/m). Building on [7], Zhang
et al. [78] extended the analysis to stochastic bilevel optimization, establishing on-average stability
bounds and deriving a generalization rate of O(1//m) due to the presence of stochastic gradients. In a
related context, Oymak et al. [55] studied generalization in neural architecture search using a bilevel
formulation, showing that approximate inner solutions and Lipschitz continuity of the outer loss yield
a generalization bound of O(1//m + 1//n). Arora et al. [5] investigated representation learning for
imitation learning via bilevel optimization, offering generalization bounds of order O(1/,/m) that
depend both on the size of the dataset and the stability of learned representations.

Difficulty of obtaining minimax rates in our setting. Although spectral filtering yields minimax
rates [51] in the kernel instrumental variable regression setting [68], it fundamentally relies on a
linear operator representation of the inner minimizer, typically characterized through the spectral
decomposition of a compact, self-adjoint covariance operator (see, e.g., [20, 8]). This formulation
allows one to apply functional calculus on the spectrum, with filter functions (such as Tikhonov
regularization and truncated SVD) controlling the contribution of small eigenvalues [27, 49]. Under
suitable source conditions, this enables the derivation of minimax optimal convergence rates for
kernel ridge regression and other problems involving quadratic losses. In our framework, however,
the inner objective is generally not quadratic in w, and the mapping w — A7, is nonlinear. Moreover,
we consider a fixed ), in contrast to the vanishing-regularization regimes where spectral filtering is
most effective for minimax analysis. As a result, the source condition assumption and the spectral
filtering tools that underpin minimax guarantees in the quadratic case do not apply directly in our
setting.

B Regularity and Differentiability Results

B.1 Regularity of the objectives

The following propositions establish differentiability of considered objectives. We defer their proof
to Appendix G.

Proposition B.1 (Differentiability of L;,, and L,:). Under Assumptions (A) to (D), for any (w, h) €
R? x H, the functions L;, and Ly admit finite values at (w, h), are jointly differentiable in (w, h),
with gradients given by:

8wLout(w7 h) = ]EQ [awgout(wa h(l’), y)] € Rda ahLOut(w7 h) = EQ [avgout(w7 h(:E)v y)K(J;a )] € H>
&uLin(wv h) = E]P’ [auéin(w: h(l‘), y)] € Rdv 8hLin(W7 h) = E]P [avéin(wv h(I), y)K(‘T7 )] +Ah e H.
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Similarly, the empirical estimates L;, and L.,; admit finite values, and are differentiable with
gradients admitting similar expressions as above with P and Q replaced by their empirical estimates

P, and Q,,.
Proposition B.2 (Differentiability of O}, L;,,). Under Assumptions (A) to (D), for any (w, h) € R¥xH,
the function (w, h) — Oy Lin(w, h) is differentiable with partial derivatives given by:
8i,hLm(w, h) =Ep [85,,,&”(0;1, h(z),y)K(z, )] € L(H,RY),
02 Lin(w,h) = Ep [83€m(w7 h(z),y)K(z,) @ K(x, )} +AIdy € L(H, H).

Moreover, for any w € R and h € H, the operators 837hLm(w, h) and 83 L, (w, h) — A1dy, are
Hilbert-Schmidyt, i.e., bounded operators with finite Hilbert-Schmidt norm. The same conclusions
hold for the empirical estimate (w,h) — OnLin (w, h) with partial derivatives admitting similar
expressions as above with P replaced by its empirical estimate ]IADn

Proposition B.3 (Strong convexity of the inner objective in its second variable and invertibility of
the Hessians). Under Assumptions (A) to (E), h — Lin(w,h) and h — Lin (w, h) are A-strongly
convex for any w € Re. Moreover, for any w € R and h € H, the Hessian operators 02 Lin(w, h)
and 8%52-“((,0, h) are invertible with their operator norm bounded by %

Proof. By Assumption (E), we know that v + £;,,(w,v,y) is convex for any w € R? and y € ).
Moreover, by Proposition B.1, (x,y) ~ £, (w, h(x),y) is integrable for any w € R? and h € H.
Consequently, by integration, we directly deduce that h — Ep [¢;,, (w, h(z),y)] is convex for any

w € RY. Finally, h — L, (w, h) = Ep [, (w, h(2), )] + ||h||§_[ must be A-strongly convex, for
any w € R%, as a sum of a convex function and a A-strongly convex function. Similarly, we deduce

that b — L;y, (w, h) is A-strongly convex, for any w € R%. Invertibility follows from the expression
of the Hessian operator in Proposition B.2 O

B.2 Differentiability of the value function

Proposition B.4 (Total functional gradient V.F). Assume Assumptions (A), (B), (D) and (E) hold.
For any w € R%, the total functional gradient V F(w) satisfies:

VF(w) = O Lout(w, hy) + 02 Lin(w, h)al, € R, (6)

where a, is the unique minimizer of the following quadratic objective:
1
Logi(w,a) = 3 (a,Hy,a), +(a,dy), ., foranya cH, @)
with H,, == 0% Lin(w, h%,) : H — H being the Hessian operator and d, = Oy, Loyt (w, b)) € H.

Proof. By applying Propositions B.1 and B.3, we know that h — L;,(w, k) has finite values, is
A-strongly convex and Fréchet differentiable. Moreover, by Proposition B.2, 0y L;, is Fréchet
differentiable on R% x 7, and, a fortiori, Hadamard differentiable. Therefore, by the functional
implicit differentiation theorem [36, 58, Theorem 2.1], we deduce that the map w +— A is uniquely
defined and is Fréchet differentiable with Jacobian 0,k solving the following linear system for any
w € R%:

62

w

nLin(w, b)) + 00 L (w, b)) = 0.
Using that 97 L, (w, hY,) is invertible by Proposition B.3, we can express d,,hY, as:
* * * -1
8whw = _aZ,hLin(wvhw) (8,%Lm(w,hw)) .

Furthermore, L, is jointly Fréchet differentiable by application of Proposition B.1, so that w >
F(w) is also differentiable by composition of the functions (w, h) + Loyt (w, h) and w — (w, hY).
For a given w € RY, the gradient of F is then given by the chain rule:

VF(w) = OwLout(w, hy) + 0uwhis0nLowt (w, h). (8)
Substituting the expression of d,,h}, into Equation (8) yields:

VF(W) = 0o Lout(w, h5) — 02 Lin (@, h) (92 Lin(w, h)) ™" On Lowt(w, BS).
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To conclude, it suffices to notice that the function o, appearing in Equation (6) must be equal to
—-H; td,,. Indeed, a?, is defined as the minimizer of the quadratic objective Lq;(w, a) in Equation (7)
which is strongly convex since the Hessian operator is lower-bounded by A Id4 . Consequently, the
minimizer a, exists and is uniquely characterized by the optimality condition:

H,al +d, =

The above equation is a linear system in H whose solution is given by a*, := —H'd,,. O

C Gradient Estimators

Proposition C.1 (Expression of VFE (w) by implicit differentiation). Under Assumptions (B) to (E),
for any w € RY, the gradient ¥V F(w) of the discretized kernel bilevel optimization problem (KBO) is
given by:
T 1 ou 1 in -1
VF(w) = — D 1, — —DJ M Tue RY,

where K and K are the Gram matrices in R"*"™ and R™*™ with entries given by K;; = K (x;, ;)
and K;j = K(Z;,z;), and M € R™*", u € R", Dg"* € R™, D"t € R>*™, D € R"*", and
D7, € RX™ are defined as:

M = KD, 40\, u=K' DUt
pout — (a Cout (w ho (7 ),gj))lgjgm, pout — (a Cout (w0, ho (7). yj))lgjgm
Dty = ding ( (33 huton),__)o DBy (Bbadiulen)

Proof. Letw € RY. Recall the expression of F (w):

;iw@m@m)

n

-~ 1 A 9
s.t. h, =argmin L;,(w,h) = — Lin (W, h(x;),y:) + = ||h||5, .
sm (w, k) n; (w, hlzi), y:) + 5 [Ihll3,

By the representer theorem, it is easy to see that h., must be a linear combination of

K(Z‘l, ')7 e ,K(l‘n, )
= K ) ©)

Hence, finding /i, amounts to minimizing L;,, (w, h) over the span of (K (z1,-), ..., K(zn, ")), i.e.,

over functions A7 of the form hY = )", (): K (z;, -) for v € R™. Restricting the objective to such
functions results in the following inner optimization problem which is finite-dimensional:

A
. fargmmfz&n (Kv)i,vi) + = ‘YTK%
~YER™

where we used that (h7(z;))1<i<n = K= and ||h7||7_[ = ~T" K~. Similarly, using that
(hY(Z;))1<j<m = K, we can express F(w) as follows:

1 _— ~
== ;éout (w: (K4,)5:95) -

Differentiating the above expression w.r.t. w and applying the chain rule result in:

m m

- 1 - = . -
Za gout ) yj) + E Z(8w7w KT)javgout (wv (K 7w)jayj) )

j=1
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where 0,7, denotes the Jacobian of %,,. We can further express the above equation in matrix form
to get:

~ 1
VF(w) = — D°"t 1, + amw Dout (10

Moreover, an application of the implicit function theorem® allows to directly express the Jacobian
0.7, as a solution of the following linear system obtained by differentiating the optimality condition
for 4, w.r.t. w:

D\, K+ (9.4,) (KDY +n7Lx0) K =0,

M
A solution of the form 9,7, = — Dfdrfv M~ always exists by invertibility of the matrix M. The
result follows after replacing 0,4, by — Diffv M~ in Equation (10). O

Lemma C.2 (Estimator of the total functional gradient). Let w € R%. Consider the following
functional estimator:

Za fout w h Z lin W h ( )7yz)dw(xl)

Then, under Assumptions (A) to (E), VF (w) admits the following expression:

— 1 1. Ay,
VF(w) = —Dg* 1, + D [K 4] [Oﬂ‘ } €RY,

where D29t DI®_ DO and D.}, are the same matrices given in Proposition C.I, while &, € R"

v,V

and Bw € R are solutions to the linear system:

MK Mu| |ay| = n fu (11
uT M p Bw B m |V ’
where the vector u and matrix M are the same as in Proposition C.1, while p and v are non-negative
scalars.

Proof. Let w € R?. We start by providing an expression of G, as a linear combination of the
kernel evaluated at the inner training points x;, i.e., K (x;, -), and some element £ € H that we will

characterize shortly. From it, we will obtain the expression of V.F (w).

Expression of G,,. Recall that G, is the unique minimizer of Eadj in Equation (5), which admits, for
any a € H, the following simple expression by the reproducing property:

Eadj UJ a Za2£zn W h ) ) (xl)

£

< Zavgout w, h ) ) (I’], )> + %Ha”%{

H

Hence, by application of the representer theorem, it follows that a,, admits an expression of the form:

n

(=Y (60)iK (i) + But. (12)

i=1
Therefore, it is possible to recover &, by minimizing a — L,q5(w,a) over the span of
(&, K(x1,),...,K(xn,-)). Hence, to find the optimal coefficients &, = ((&):)1<i<n and B,

3In the case where the matrix K is non-invertible, one needs to restrict =y to the orthogonal complement of

the null space of K. Such a restriction is valid since the resulting solution he, will not depend on the component
belonging to the null space of K.
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we first need to express the objective L,q; in terms of the coefficients a € R™ and 3 € R for a
n

given a®? € H of the form a®? = Y7 (a); K (z;,-) + BE. To this end, note that the vector

(&(x1),...,&(xy,)) is exactly equal to u = K' D2"t as defined in Proposition C.1. Moreover, using
the reproducing property, we directly have:

(@ P hsien = K ] |5 @0 0n =03 3]
ool = o7 A1 e 3]

We can therefore express the objective Eadj as follows:

Luyfeona®?) = a7 ) [ ] ity 9]

st 3]+ 50 8 ar ] (5]

Hence, the optimal coefficients &, = ((&w)i)1<i<n and Bw are those minimizing the above
quadratic form and are characterized by the following optimality condition:
M M

(KD®, 41\l ) K (KD, +nAL,y,)u [&w}_ e
T(KD™, +nAlux,) u' DPou+n[lE]3 | | Bo i

M p>0

v>0

Expression of ﬁ:(w) The result follows directly after expressing ﬁ(w) in vector form using the

notations D2"* and DI, from Proposition C.1 and recalling that (., (;))1<i<n = [K U] {%tw} .

Proof of Proposition 3.1. Let w € R%. Define
1 & .
752 w out w, h Z Lin W h ( )7yi)aw($i)a

where h,, and a,, are given by Equations (9) and (12). We will show that ﬁ:(w) — VF(w). By
Proposition C.1 and Lemma C.2, we know that V.F (w) and VF (w) admit the following expressions:
~ 1 1 .
VF(w)=—D"*1, - —D» M 'u
m m-

VF(w) = %Dﬁ“t 1, + %Diw‘jv K u {%] .

Taking the difference of the two estimators yields:

VF(w) — VF(w) = %DL“’V <M_1 u -+ % K u] [gw])
1 Ao
- —Din M <u+T:M[K ul [‘;WD

=0

where the term u + 2 (MK &, + Bw M u) is equal to 0 by definition of ¢, and Bw as solutions of
the linear system (11) of Lemma C.2. [

D Preliminary Results

In this section, €2 is an arbitrary compact subset of R? with hull(Q2) denoting its convex hull, which
is also compact. We also consider an arbitrary fixed positive value A such that A < A as this would
allow us to simplify the dependence on A of the boundedness and Lipschitz constants.
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D.1 Boundedness and Lipschitz continuity of 4}, and he,

Proposition D.1 (Boundedness of h}, and fzw). Under Assumptions (A) to (E), the func-

tions w — ||hY|ly and w — ||hy|l3 are bounded over hull(Q) by BT‘/E, where B =
SUDyehull(),yey [Ovlin(w,0,y)| > 0. Moreover, for all w € hull(Q) and x € X, hi)(x) and

h.(2) take value in the compact interval V := [— 55 Br] C R.

Proof. Boundedness of ||} |,, and Hﬁw H . Let w € hull(Q2). Using Lemma H.2, we know, for any
H
h € H, that:

N 1
1h = hllay < 5 100 Lin(w, )15,
This is particularly valid for h = 0. Thus,
N 1
1l < 5 19n Lin (@, 0)ly, -

Using the expression of the partial derivative 0y, L;,, established in Proposition B.1, we obtain:

N 1
||hw||7-[ < XHEP [0ulin(w,0,y) K (z,-)] HH
By Assumption (B), K is bounded by . Hence, Jensen’s inequality yields:

ol VE
19500 < SE | 100in (w0, 0.9) 1K )y, | < LB | 19,8in(e0,0,9)

By Assumption (C), ) is compact, which implies that hull(2) x ) is compact. From Assumption (D),
we know that the function (w,y) — 0y (w,0,y) is continuous. Given that every continuous
function on a compact space is bounded, we obtain:

Bk

R5 114 < — < +00, where B := sup |0y lin(w,0,y)] > 0.
wehull(2),yey

To prove that HE“’HH < B;\/E, we follow a similar approach to that of ||h}],, < B/‘\/E. More

precisely, we investigate the case where the expectation is with respect to the empirical estimate P,
of P.

ht(x) and h,(z) belong to V. Letw € hull() and 2 € X. By the reproducing property, the
Cauchy-Schwarz inequality, and Assumption (B), we have:

hL@) < VEIRL and - [ho(@)| < VE

o
Using the bound on ||h}][,, and Hﬁw H already proved in the first part of this proof, we get:
H
Bk
< —.
A
This concludes the proof. O

|h;(x)\§% and [ (a)

Proposition D.2 (Lipschitz continuity of w +— h}). Under Assumptions (A) to (E), the function w +—
hl, is LT\/E—Lipschitz continuous on hull(Q2), where L := sup,,cpui(q) vev, yey ||837v€m(w, v, y)H >

0, and V is the compact interval introduced in Proposition D.1.

Proof. To prove this proposition, we adopt the strategy of finding an upper bound for the Jacobian,
which serves as the Lipschitz constant.

Let w € hull(£2). Using Propositions B.1 and B.3, we know that A — L;,(w, h) is A-strongly convex
and Fréchet differentiable. Also, by Proposition B.2, 0y, L;,, is Fréchet differentiable on R? x H, and,
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a fortiori, Hadamard differentiable. Then, by the functional implicit differentiation theorem [36, 58,
Theorem 2.1], the Jacobian 9,k : H — R? can be expressed as:

Duhly = =02 Lin(w, h2) (07 Lin(w, 1)) "

We have:
* * —1
10 llop < 1021 Lin D), | 07 Lin12)) Y|
2 1 Line, )
< op
- A
|2 (02, 60 (w0, 12 (2), ) K ()]
_ ) op
a A
_ BB fun(e o), ) 1 )l
- A
VEREs [ (92 4 Cin w0 15, (2). )]
< : (13)
A
where the first line uses the sub-multiplicative property of the operator norm || - ||op, the second

line stems from the fact that h +— L, (w, h) is A-strongly convex, for any w € RY, as proved in
Proposition B.3, the third line follows from Proposition B.2, the fourth line uses Jensen’s inequality,
and the last line is a direct consequence of the boundedness of K by x (Assumption (B)). According
to Proposition D.1, b} (z) € V = [—%, %], which is a compact interval of R, where B =
SUPy, chuli(2),yey |Ovlin(w, 0,y)| > 0. By Assumption (C), ) is a compact set, hence hull(2) x V< Y
is compact. Besides, by Assumption (D), (w, v, y) +> 0yl (w, v, y) is continuous over the domain
hull(©2) x V x ). Since every continuous function on a compact set is bounded, this leads to:

Ep [ 102, in (w, hZ(m),y)H <L:= sup 102, lin(w, v, y)]|| < +o0.
wehull(Q),veV,yey

Substituting this bound into Equation (13) means that L*/\/E is an upper bound on [|9,,h|,,,,- Thus,

the result follows as desired.

D.2 Local boundedness and Lipschitz properties of /;,, /,,:, and their derivatives

Proposition D.3 (Local boundedness). Under Assumptions (A) to (E), the functions (w, z,y) —
Cout(w, b (2),y), (W, 2,y) = Oulout(w, hy(T),y), and (w,x,y) — Oulout(w, b (x),y) are
bounded over hull(Q) x X x Y by some positive constant M ;. Similarly, the functions (w, x,y) —
&Jﬁm(w, h:)(iﬂ), y)’ (w7 Z, y) = aggln(wa h:)(x), y)! and (w, Z, y) = af),vgin(wv h:;(x)ﬂ y) are
bounded over hull(Q) x X x Y by some positive constant M;,. The constants M, and M,
are defined as:

Mout = Sup maX(|€out(wyv7y)| 9 ||aw£out(wvvvy)” ) ‘avgout(wvvvy)D > 07
wehull(Q),veV,yey

Ofém(w, v,Y)

M, = sup max (|8U£m(w, v, Y)|, 837v€m(w,v,y)”) >0,

wehull(2),veV,yey

)

where V C R is the compact interval defined in Proposition D. 1.

Proof. By Proposition D.1, we have that hj(z) € V := [-8= B5] C R, for any 2 € X. From
Assumption (D), we know that £;,,, £, and their partial derivatives are all continuous on hull(2) x
V x Y. Also, Y is compact by Assumption (C). Thus, hull(©2) x V x Y is compact. As every
continuous function defined over a compact space is bounded, we obtain that:

sup out(w, hi(x), y)| < sup [Cout(w, v, y)| < 400,
wehull(),z€X,yey wehull(Q),veV,yeY
sup [0eo(w, b, (), y)|| < sup 10elo(w, v, y)|| < 400,
wehull(Q),zeX,yey wehull(Q),veEV,yey
where o € {{v}, {w},{w,v}} and o € {in, out}. This implies the desired result. O
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Proposition D.4 (Local Lipschitz continuity). Under Assumptions (A) to (E), there exists a positive
constant Lip,,, so that for any (x,y) in X x Y, the functions w — Loyt(w, b} (2),y), w —

Owlout(w, b (), y), and w — Oployt(w, h(x),y) are locally Lip/\"“‘ -Lipschitz continuous over
hull(QY). Similarly, there exists a positive constant Lip,,, so that for any (z,y) in X x Y, the functions

2 2 * Li in
w = Oylin (w, Wy (), y), w = 02l (w, WYy (), y), and w — 02, Lin(w, hl (), y) are locally =3~
Lipschitz continuous over hull(2). The constants Lip,,,, and Lip,,, are defined, for any 0 < A < A,
as:

Lipys = (A + Minr) max (Moys, Moyi) > 0
aMin

Lip,,, == (A + M;, k) max (Mm ) > 0,
where:
Mo = sup  max ([|02lour(w,v,9)]| 92 oot @, 0,9 |02 ot (w0, 0,9)]) >0,
w€hull(Q),veEV,y€Y
M;, = sup max (H@wﬁf,&n(w,vay)n g \3§€in(w7v7y) ) | 8w85,v£in(wa”ay)H) >0,

wehull(Q),veV,yey

with My, and M, being the positive constants defined in Proposition D.3, and V C R is the
compact interval defined in Proposition D. 1.

Proof. For any (w,z,y) € hull(2) x & x ), we have:

[Velout(w, b (), y)|| = [|0wlout (w, b (), y) + Ovlout(w, b (2), y)Ouh, (@) |
SO lout (w, he (@), )| + 10lout (w, iy (), Y)H1OwhE llop 1K (2, )l
M,
S Mout (1 + M)
A

< Mout (A + M’LTLH)

— )\ )
where the first line uses the chain rule, the second line applies the triangle inequality and the
reproducing property of the RKHS #H, the third line follows from Proposition D.3 to bound the
derivatives of /,,, from Proposition D.2, which states that the function w — h; is L j\/E-Lipschitz
continuous with L := Sup,chui(0),vev,ycy 102 lin(w, v,9)|| < Min, to bound [0wh |l ops and
from Assumption (B) to bound || K (z, -)||,,, and the last line is a direct consequence of 0 < A < A.
In a similar way, we obtain:

M, ut (A + Mznlﬁ) Mout (A + Ml’nK/)

vaawgout(wa h:;(‘r)v y)||0p S o )\ s ||Vw5v€out(w, h:($)7 y)” S )\ ’
* M; A+M K N M A+M K
Vo lin(w, b (), )| < % V02l (w, B (), 9)|| < M
Min (A + Miyk)
2ol . Zin 2T Pinh)
9.8, « T )
Combining all these bounds concludes the proof. L)

E Generalization Properties
As before, let Q be an arbitrary compact subset of R.

E.1 Point-wise estimates

We present a point-wise upper bound on the value error ’.7-' (w) — F (w)’ and gradient error

HV]-' (w) — ﬁ:(w) H To this end, we introduce the following notation for the error between the

inner and outer objectives and their empirical approximations evaluated at the optimal inner solution
h:

89 = | Lowe(w, 1) — Lowt(w, h5)|, 0 = | Lin(w, 1) — Lin(w, 1)) .

’ ~
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By abuse of notation, we introduce the following errors between partial derivatives of L;,, and fm
(resp. Loyt and Loy, evaluated at (w, hY), i.e.,

ah(ngt = HahLout(wa h:;) - ahzout(wy h‘:)H’H 78w(53}ut = HawLout(wa h:)) - awzout(w; h:;)

)

awLin(wa h:;) - 8wzin(w7 h:;)

)

Ao = H&,LLm(w,h:) - ahim(w,h:)HH,asz;" - ‘

OR0%" = |07 Lin(w, %) = O Lin(eo, )

| P2l = (OB Lin (o, h2) = 22 Lm0, )

op

Proposition E.1. Under Assumptions (A) to (E), the following holds for any w € ):

Proof. Letw € . The function h — Em(w, h) is A-strongly convex and Fréchet differentiable by
Propositions B.1 and B.3. Moreover, h,, is the minimizer of / — Em(w, h) by definition. Therefore,
using Lemma H.2, we obtain a control on the distance in # to the optimum fzw of h — Zm(w, h)in
terms of the gradient GhEm(w, h):

N O

i, = Lot men

In particular, choosing h = h}, yields the inequality. The fact that H@hfin (w, h;)H = Opoin
H
follows from the optimality of A}, which implies that Op, L;, (w, h%,) = 0. O

Proposition E.2. Under Assumptions (A) to (E), the following inequalities hold for any w € :

B = |oual,12) = Zour(w, )| < Cone || = B,
OB = |[OnLout(w, h2) = OnLoua )| < Cout || = | -
0uBZ" = || Lout w,1) = 0 Loutw )| € Cout || = h| -
ORES = |OhLin(, 1) = OiLin(w, o) | < Cin |1, = o
Otz = |08 Lin(w, hE) = B Lin(w, hu) | < Cun|E — oo

The positive constants C oy and C;y, are defined as:

Cout ‘= Inax (Mout\/g7 Moutha Mout\/g) > Oa
C;p = max (Minm/ﬁ, Mk, Min\/d/{) > 0,

where Myys, Moys, and M, are the positive constants defined in Propositions D.3 and D.4.

Proof. Lipschitz continuity of some functions of interest. Letw € Q2. According to Proposition D.1,
both A (x) and hy,(z) lie in the compact interval V := -85 B5] C R, for any « € X, where
B = sup,enui(),yey [0vlin(w,0,y)| > 0. By Assumption (C), ' is a compact set. Hence,
Q x V x Y is a compact set as well. Furthermore, by Assumption (D), (w,v,y) — {in(w,v,y),
(w,v,y) — Loyt (w, v,y), and their derivatives are all continuous over the compact domain Q2 x V' x ).
Therefore, these functions and their derivatives are bounded on this domain. In particular, this also

holds when v takes the specific values h(z) or hy(z). Let o be either h (x) or hy(z), for any
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x € X.Forany w € Q and y € ), we have:
|av€0ut(wal_}7y)| S SUP |av€out(wavay)| S Mout < +OO;
weNueV,yey

|8Z£out(w7777y)| S Sup |65£0ut(W,U,y)| S Mout < +OO,
wEQUEV,YeY

||w1) outwvyH< sup || outwvy||<Mout<—|—oo
weEQUEV,YeY

‘6S€ln(w7’a7y)’ S sup laggln(wa v, Z/)‘ S Mzn < +OO,
wEQUEV, YEY
Havﬁi)vém(w,@,y)uop < sup H(‘L(‘?ﬁém(w,v,y)u < M, < +oo.
weNWEV,YeY

This means that v € V — loui(w,v,y), v € V = Oployt(w,v,y), v € V = Ol (w,v,y),
v eV Iin(w,v,y), andv € V 5 92 lin(w,v,y) are Lipschitz continuous, with Lipschitz

constants Mz, Mowt, Mowe, Miy,, and Mm, respectively, forany w € Q and y € ).
Upper bounds. We have:

~ ~ ~ ‘

Ef;ut = Lout(wu h:;) - Lout(wa hw)

Zgout , j _*Zéoutw h ) )

< fz ot (0, B (35), 5) = Lout (@ ), 55|
<))
< M h‘:_h“HH

where the first line uses the definition of (w, h) — Lt (w, h), the second line applies the triangle
inequality, the third line leverages the fact that v — £y (w,v,y) is My-Lipschitz continuous,
for any w € Q and y € ), and the last line follows from the reproducing property of the RKHS
H, Cauchy-Schwarz’s inequality, and Assumption (B) to bound || K (z, -)||,, by /. Similarly, we
obtain:

OpE" < Myyik Hh; — fleH, 8, B < I,

i
H

OLE™ < Mmm/E‘

i < -]

Combining all the bounds finishes the proof. O
Proposition E.3. Under Assumptions (A) to (E), the following inequalities hold for any w € :
||ahLout(wah:;)H”H S Oouta ||83;7hLin(wah:;)||op § Cin7 H8317hzin(wa ilw) S Oina
op

where Cy, and Cy,, are the positive constants defined in Proposition E.2.

Proof. Letw € Q.
Upper bound on |0, Loy (w, h;)||,,- We have:

190 Lo, 125, = ||Be [0 bons (0, 12 (@), 1)K (2, )] |

< Eq [ 10 Cout @ B @), )| 1K @)l
< VREQ 10 fout(w, B (@), 9)] |,

where the first line follows from Proposition B.1, the second line results from the triangle inequality,
and the last line uses Assumption (B) to bound || K(z,-)||,, by /k. Furthermore, we know by
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Proposition D.1 that (w, b, (), y) belongs to the compact subset 2 X 1V x Y, and by Proposition D.3
that 0, €out(w, Y (z),y) is bounded by a constant M,,,; on hull(2) x V x V. Hence, it follows that:

||ahLout(w7h:)HH < \/EMout < Oouta

where Cy,; is defined in Proposition E.2.

Upper bound on H@i pLin(w, h%)

. According to Proposition B.2, 82 ; Lin(w, h,) is a Hilbert-
op

Schmidt operator, which points to:

2 * h* d 2 2
Haw,hLln w h H H hLG W)HHS = Z Hawl,hLi”(w’h:’)HH' (14)
=1
This means that to find an upper bound on ‘ o? nLin(w, h%)|| it suffices to establish an upper
op

2
bound on H@fjthm(w,h;)HH foranyl € {1,...,d}. Forafixed! € {1,...,d}, we have:

102, Ziner B2, = [ 08, on 2 ) ) K )] |

< B 102, o W3 @), 0) 1K (o)
<EIP |:Haw vgzn :,(:r),y)|‘2:| K

where the first line follows from Proposition B.2, the second line is a consequence of Jensen’s
inequality applied on the convex function || - ||2, and the last line applies Assumption (B) to bound

|| K (z,-) ||3,[ by . Incorporating this upper bound into Equation (14) yields:

H hLln w, h:;)” \/EIP’ [Ha gln w h* || } drk < MijpVdrk < Cin7
where we used Proposition D.3 to bound 92 , £y (w, by, (), y) by the constant M.

Upper bound on H@i’him(w, he,)

. The derivation of this upper bound follows the same steps as
op

the previous one, with the only differences being the use of Em instead of L,,,, and ﬁw instead of hj5.

Note that in the last step of each of the three upper bounds, we used the fact that the functions we are
dealing with are continuous by Assumption (D) on 2 x V x ), which is compact because €2 is compact,
Y is compact by Assumption (C), and V is a compact interval of R defined in Proposition D.1. Hence,
those functions are bounded. O

Proposition E.4 (Approximation bounds). Under Assumptions (A) to (E), the following holds for

any w € €
- out (jout in
[Flw) = Flw)| < a2 + =L 0n%,
|VFw) - TF )| <ouoz + CA OndeM + C"“tc’"ah(sm
COUt 2 in Cout Cm, 02 m
+/\8“’h5”+/\< N toe ) ol

where the constants C;y, and C.,, are given in Proposition E.2.

Proof. In all what follows, we fix a value for w in 2. We start by controlling the value function, then
its gradient.

Control on the value function. By the triangle inequality, we have:

F(w) = Fw)| < [ Louw,h5) = Tourlw, 1)+ |Bout(w, 1) = Loue(eo, )| (15)

out out
6w Ew
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According to Proposition E.2, the error term E°*! is controlled by the norm of the difference h} — heo,
ie., E% < Cou hE — hy H <
H

%ah(sjy. Therefore, combining both bounds yields E9% < %5‘;15@”. The upper bound on the
value function follows by substituting the previous inequality into Equation (15).

hl — }ALWH . Moreover, by Proposition E.1, we know that ‘
H

Control on the gradient. By Proposition B.4, we have the following expression for the total gradient
VF:

VF(w) = OwLout(w, hly) — 83)hLm(w, he) (O Lin(w, h;))f1 On Loyt (w, h5).

Similarly, the gradient estimator VF is defined by replacing L, and L;,, by their empirical versions
Loyt and Ly, and b, by hy, = arg mingey Lin (w, k) in the above expression, i.e.,

VF (@) = 0T ) — 0 Banos ) (REin(w 7)) Onouaer ).
To simplify notations, for any i € H, we introduce the following operators R(h), ﬁ(h) cH —
R(R) = 02y Liner ) (R Lan(o, ) ™ and R(R) = 32, Ein(e ) (7m0, 1))

The difference VF(w) — ﬁ-’(w) can be decomposed as:

VF(w) - VF(w)

= (0 Lout(, %) = uLoun @, h2)) + (0 Loue (w0, %) = D Loua (. h.)
= Rlhe) (9 Lows(eo, %) = L@, h2) ) + (90 Bous (0, h2) = 0 Lowr (0, h) ) )
— (R(1%) = R(hw) ) On Lowr(w, 1),

By taking the norm of the above equality and using the triangle inequality, we obtain the following
upper bound:

HV}"(w) - ﬁ(w)H

< [0 Lous e, %) = 9 Zona w0, 12)|| + |0 Zour (@0, %) = B Do (o0, )

Ow §gut Ou Egut

+ Hﬁ(hw) HahLout(Wv h:;) - ahzout(wv h:))H’H + Hahzout(wa h:;) - 8hiout(w; }ALU.))HH
op
8h55ut 8}1E3”t
+ | B0z) = R 100 Lows oo, 22 e (16)

in terms of derivatives of
op

Next, we provide upper bounds on HR(h;) - }AB(iALw)
Lin and fm

and Hﬁ(ﬁw)
op

Upper bounds on HR(hZ) — R(hy)

and Hﬁ(ﬁw)H . By application of Propositions B.2
op

op
and B.3, we deduce that 92 ;, Lin (w, h;), 97 Lin(w, b)), 02 j Lin(w, he,), and 9} Lin (w, hy,) are
all bounded operators. Moreover, since L;,, and Em are A-strongly convex in their second argument
by Proposition B.3, it follows that 92 L, (w, h%) > A1dy and 87 L (w, hy,) > A1dy. We can
therefore apply Lemma H.1 which yields the following inequalities:

| R(2) = R 02 nLin (@, 12 | | OR im0, 1) = OR L (0, )

1
op Sﬁ“ op

)

1 ~ .
+ 5 [0 aLin(w,h2) = 02 Lin(w, )

op

Jre

1 ~ A
<+ |02 Tintw, ho)
op A ?

op
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By applying the triangle inequality to both terms of the first inequality above, we obtain:
| () - Bih)|
op

<5 120 Linto, R | (|03 Lin o, 2) = T )|+ |08 im0, 1) = B (.

op

2 §in 2 pin
6h 6w 8h Ew

1 * 2 * T * 2
3 | o2ttty = 20 Linto )|+ |20 Zin 1) = 05 Ein(o, )

A

op

62 6777. 62 E?‘n

w,h "~ w w,h 7w

Final bound. We can now substitute the above bounds on HR(hZ) — R(hy)

) and Hﬁ(ﬁw)

o op

into Equation (16) to obtain the following upper bound on the gradient error:

HV}'(w) - ﬁ(w)H

1 ~ “
<002 + S + 5 H@i)hLm(u}, ho)||  (Bnoct + 0, B2

op
1 ) ) 1 ) )
+ 1|0n Lowt (w, B || (v 102 , Lin(w, h;)Hop (930 + ORE™) + 3 (92,00 + ag,hE;n)> .

7)

Furthermore, by Proposition E.3, we have the following upper bounds on the derivatives of L;,, and
Lout:

108 Lout (@, Bl < Couts 024 Lin(w, ), < Cins (020 Zintw, h)| < G

op

Incorporating the above bounds into Equation (17), we further get:

HV}"(w) _VFW) H <0,6° + 9, Bt + CA (0152 + 0, B
Cin

- Conn (S (R0 4 REL) 4 5 (0200 + 02, B) ).

By Proposition E.2, we can upper-bound the error terms 9, ES** and 9, E2“¢ by Cy:

i,
R k s
and 9?E" and 3£)hEz)” by Cin Hh:) — th% Furthermore, since Hh:) — th% < %ﬁhéi," by
Proposition E.1, we can further show that the gradient error satisfies the desired bound:

Cin ou Czn in 1 in
Tahaw t —+ Cout <A28}215w + X537h5w )

CO’U«t Cln C’iQ’n in
3 <1+2 3 + 2 >8h5w.

HV}'(w) - ﬁ(w)H <8690 4

+

E.2 Maximal inequalities

Proposition E.5 (Maximal inequalities for empirical processes). Let A be a positive constant. Under
Assumptions (A) to (E), the following maximal inequalities hold for any 0 < A < A:

/1
Eqg |:sup 65@] < ch(Q) max (M, Lip,,; diam(Q), AM?2,,),

weR

[ d
Eg {sup 8w53“t] < 5 ¢(Q) max(M,y; Lip,,, diam(Q2), AMfut),
m

weN

where c(Q)) is a positive constant greater than 1 that depends only on § and d, while Lip,,,, and
M1 are positive constants defined in Propositions D.3 and D.4.
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Proof. We will apply the result of Proposition F.3 which provides maximal inequalities for real-valued
empirical processes that are uniformly bounded and Lipschitz in their parameter. To this end, consider
the parametric families:

7?”“5 = {X X y e (CC,y) = 6wl£01tt(w7h2(l')ay) ‘ w e Q}7 1 S l S d
Tt = {X x ¥ 3 (2,9) = Lour (w0, h,(2),y) | w € Q.

For any 0 <[ < d, these real-valued functions are uniformly bounded by a positive constant M,
thanks to Proposition D.3. Moreover, by Proposition D.4, the functions w — 0y, €out (w, bS5 (2), y)
and w — £y (w, Y (), y) are all \~! Lip,,,-Lipschitz for any (x,y) € X x ). Hence, Proposi-
tion F.3 is applicable to each of these families, with D set to Q and Z set to X' x ). We treat both
52% and 9,62 separately.

A maximal inequality for §2“. For [ = 0, we readily apply Proposition F.3 with p = 1 to get the
following maximal inequality for §2**:

ou * 1 = * [~ ~
Bo [sup 02°] =B |sup [E0rpva Mout( P20 0] = 22 D ot 12(2).5)

1 . .
< () mi My L din(2), AV, ).

A maximal inequality for 0,,6°“*. We now turn to 9,,62“¢, which involves vector-valued processes
(as an error between the gradient and its estimate). While the maximal inequalities in Proposition F.3
hold for real-valued processes, we will first obtain maximal inequalities for each component appearing
in 9,,62*" and then sum these to control 9,,62"*. To this end, we first use the Cauchy-Schwarz

inequality which implies that Eq [sup,,cq 0.,65"'] < Eg [sup,cq(9.,65*")?] 2. Thus we only need
to control Eg [sup,,cq(9.,0%"%)?]. Simple calculations show that:

2
Eg {sup 3w53“t]
we

<Eg {sup (8w(55“t)2]
wEeN
2

d m
1 N~
< Z EQ Slég E(z,y)NQ [awlgout(‘*% h:; (m)> y)] - E Z auz Lout (w, h:; (.Z'j)7 yj)
=1 w j=1

2
| d
g( Ach(ﬂ)max(MoutLipoutdiama(Q),AMgut)) ,

where the last inequality follows by application of Proposition F.3 with p = 2 to each term in the
right-hand side of the first inequality for 1 < [ < d. We get the desired bound on Eg [sup,,c 9,65
by taking the square root of the above inequality. [

Proposition E.6 (Maximal inequalities for RKHS-valued empirical processes). Let A be a positive
constant. Under Assumptions (A) to (E), the following maximal inequalities hold for any 0 < A < A:

Eq [Sgg oot | < A—hm-d (e(62) max (z\“im,lzout,ldiam(sz),AzTigut’l))%,
w ]
Ep bgg 8h50iJn_ <\ ip72 (C(Q) max (Z\Zn,1zm,1 diam(Q)yAMgn,l>)i7
Ep [SZB 92, L" <\ inTzdz (c(Q) max (J\anzmg diam(ﬂ)vAMz?n,l)>%7
% _828 26| < At (C(Q)max (J\Z%LVQEM,Q diam(€), AM2, 2))%,
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where ¢(§)) is a positive constant greater than 1 that depends only on Q and d,
Lout,1s Lin,1, Lin 2, Mot 1, Min. 1, and My, o are positive constants defined as:

T . : T . : 7 ) : 2

Lout71 =2 Llpout MoutK/y Lin,l =2 Llpin Min"@ Lin,2 =2 Llpm ]\41‘71"£ 5

— Af2 A — Af2 T A2 2
Mout,l = Moutlﬁl, Min,l = Min’%’ Min,g = Minl*i

and Lip,,,;, Lip;,,, Mout, and My, are positive constants given in Propositions D.3 and D.4.

Proof. Consider parametric families of real-valued functions indexed by (2 of the form:

Toa = {tw : (z,9), (@",4") = fo(w,z,9) fs(w, 2,y ) K (x,2") | w € Q},
where a € {1, 2}, s is an integer satisfying 0 < s < d + 2, and f,(w, z,y) are real-valued functions
given by:
fO : (w,m,y) = aveout(wa h:,(:v),y), fl : (w x y) = avgin(wah:)(l')vy)a
f2 : (waxay) = aggzn(wah:;(x%y)a f2+l : (w,x,y) = a (wa h:)(l'),y), 1 S l § d.

wy, v
For any 1 < s < d + 2, the real-valued functions f, are uniformly bounded by a positive constant
M;,, thanks to Proposition D.3. Moreover, since the kernel K is bounded by « due to Assumption (B),
it follows that all elements ¢, of 7 , are uniformly bounded by ]\f/fmya = an/f“. Moreover, for
1 < s < d+ 2, the functions w — fs(w,z,y) are A\~! Lip,,,-Lipschitz for any (z,y) € X x Y
by Proposition D.4. Hence, it follows that the map w — t,,((x,y), (¢/,5')) is A ! Ly, o-Lipschitz
with Zm « = 2Lip,,, M;,k® for any (z,y) and (2/,3') in X x ). Similarly, for s = 0, we get
the same propertles albeit, with different constants, i.e., the family 7 4 is umformly bounded by a
constant Mout,a = M 2 i with M, introduced in Proposition D.3, and is A~ Lout o-Lipschitz in

its parameter with Lout’a = 2Lip,,+ Moutx® where Lip,,,; is given in Proposition D.4. Hence, the
maximal inequality in Proposition F.4 is applicable to each of these families with Z setto X' x ),
and ID set either to P for 1 < s < d + 2, or to Q for s = 0. For conciseness, in all what follows, we
will write z = (x,y) and z; = (z;,y;) and Z; = (&;,7;) for1 <i<nand1l < j <m.

Maximal inequalities for 9,62*" and 9;,6:". We control 9;,62"! first as 956" will be dealt with
similarly. Using Cauchy-Schwarz inequality and standard calculus, we have that:

2
Eg [sup ah(sout]
we

<Eg [sup (8h(53“t)2]

weN
2
=Eq | sup ||E(z.y)~0 [Oolout (w, b (2), y) K —fZa Cout (W, W5 (25), 55) K (25, )
-wEQ ”
[ 1 m m
=Eq sngzz~@®@[tw(z7Z’)]+@Zt Zis %) ZEZ~@ (2, %) »
w ij=1

where t,,(z, 2') = Oplout(w, B} (), ¥)Oulout (w, R} (z"),y' ) K (z,2") € To,1. The last term is pre-
cisely what Proposition F.4 controls when applying it to the family 7 ; and choosing D to be Q.
Therefore, the following maximal inequality holds by application of Proposition F.4:

1
1

Eg [sup 8@3“’5} < AimT2 (C(Q) max (Mout,lioum diam(Q), AMgut 1)) ! ,
we

where ¢((2) is a positive constant greater than 1 that depends only on 2 and d. We obtain a similar
inequality for 050! by carrying out similar calculations, then applying Proposition F.4 to the family
71,1 and choosing PP for the probability distribution ID. The resulting bound is then of the form:

1

Ep [SUP ah(;fun} <ATinTE (C(Q) max (J\animl diam(€), AM? ))i

wn,l
weN
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A maximal inequality for 97, ;0. We have:
- ) 2

Ep |sup 92 hé@”]

lwe ’

(a) .
<Ep Sup(ai,h%n)Q]
lwe

=Ep | sup

we

1 n
E(:c,y)NIP [Q%,Mm(% h:; (fE), y)K(.’E, )] - ; Z ag,ygin (wv h:; (xi)v yz)K(l'z, )

op

* 1 . *
SE]P’ sup E(w y)~P [ai,vgin(wa hw ((E), y)K(ib, )] - Z az),ygin (wv hw (xi)v yz)K(fza )
_we n i=1 HS
d [ 1 n 2
(d) * *
- ZEP Sug ]E(;c,y)NIF’ [agl,vgin(wahw(x%y)K(xv )] - H Zaf)l,ugin(wvhw(xi)vyi)K(mh')
=1 we = H

d
(e)
;ZEP Sup]Ezz’N]P’®]P’[wl22 +ﬁztwl2uzj ZEZNP wlzzl)] )

weN ij=1

where we introduced (2, 2") == 02, ,lin(w, h5(2),y)02, ,lin(w, h ('), v ) K (2, 2") € Tagi1.

wy,v
Here, (a) follows from the Cauchy-Schwarz inequality, (b) is obtamed by definition of 82 h Sin, while
(c) uses the general fact that the operator norm of an operator is upper-bounded by its Hllbert Schmidt
norm which is finite in our case by application of Proposition B.2. Moreover, (d) further uses the
Hilbert-Schmidt norm of an operator in terms of the norm of its rows, while (e) simply expands the
squared RKHS norm and uses the reproducing property in the RKHS 7. Each term in the last item
(e) is precisely what Proposition F.4 controls when applying it to the families 72,1 for1 <1 <d
and choosing D to be P. Therefore, the following maximal inequality holds by a direct application of
Proposition F.4:

Ep [Sgg o2 hém} < \” in- 242 ( (©) max (J\Z-n,lim,l diam(Q?), Aan 1)) ! ,

where ¢({2) is a positive constant greater than 1 that depends only on €2 and d.

A maximal inequality for 9;.". We will use a similar approach as for 92, ;,6.*. We have:

2
Ep [sup 8,%62”]
weN

(a)
<Ep {Sup(ahfsm) ]

weN
(b) .
7E]P’ sup E(ax,y)N]P’ [65£1n(w, hw(z)7 y)K(fE, ) & K(I, )]
weN
1< ’
- 7Zasﬂm(wvh:;(xi)ayi)]{(xiv')®K(xi7') ‘|
i op
(c) 9 .
<Ep Sug E(z,y)N]P’ [avgin(wa hw(l‘>7 y)K(LU, ) & K(LL'7 )]
we
1 n 2
=1 HS
(d)
—E]P’ ilég Ez 2/ ~PQP [t ’I’L2 Z szzj Z]EZN]P’ Z Zz)] )

1,j=1
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where we introduced t,,(z, 2') == 02 (w, 2, Y)0%lin (w, 2", y') K?(x,2') € T3.2. Here, (a) follows
from the Cauchy-Schwarz inequality, (b) is obtained by definition of 925", while (c) uses the general
fact that the operator norm of an operator is upper-bounded by its Hllbert—Schmidt norm which
is finite in our case by application of Proposition B.2. Moreover, (d) further uses the identity in
Lemma H.3 for computing the Hilbert-Schmidt norm of sum/expectation of tensor-product operators.
The last item (d) is precisely what Proposition F.4 controls when applying it to the family 73 2 and
choosing D to be P. Therefore, the following maximal inequality holds by direct application of
Proposition F.4:

e

Ep [sup 82(55"} < AipT2 (C(Q) max (]\anzmg diam(£2), Aan 2))
weN

where ¢(§2) is a positive constant greater than 1 that depends only on €2 and d. O

E.3 Proof of Theorem 4.1

Theorem E.7 (Generalization bounds). The following holds under Assumptions (A) to (E):

[sup ‘]—' .7?(w) H L Cout

T+ Ts
weN Am?2 \in3

efsup e - T <5 (a0 ) e St (2o )

where the constants C;y, and C.,,; are given in Proposition E.2.

N

Proof. Using the point-wise estimates in Proposition E.4 and taking their supremum over 2 followed
by the expectations over data, the following error bounds hold:

[sup ’]—" f(w)” <Eg {sup (527“} + %Ep [sup 8;152)"} ,

we we weN

{sup HV}" ﬁ-"(w)H] <Eg {Sup aw(szut} + %EQ {Sup 3@3}”}

weN we we
Cout Czn C2
E 5’Ln
ot (12« S e [
+7C°“tcm]E]p sup 926" | + COUtE]P’ sup o w00
A2 weN A

Furthermore, we can use the maximal inequalities in Propositions E.5 and E.6 to control each term
appearing in the right-hand side of the above inequalities:

[Sup ‘]—' ﬁ(w)” <R (m_%)\_l + Coutn_%)\_(1+%)) ,
weN

{Sup HVI ﬁ(w)‘” SR(m_%A_ld% + Cpm 2N~ (1HD)
weN
Oin szn
A 2
+ Coutcinnié)‘i(2+%) + C()?Ltni%)\f(l‘i'%))a

+ Couen ™ 2AT0FD) (1 +2

where the constant R depends only on the Lipschitz constants Lip;,, and Lip,,,;, the upper bounds
M;,, and M, the bound « on the kernel, the set 2, and the dimension d. Rearranging the obtained
upper bounds concludes the proof. O

E.4 Generalization for bilevel gradient methods

Proof of Corollary 4.2. Consider that inf,, , , lout(w,v,y) — cllw|®> > 0, which entails
Cout(w,v,y) > ¢||w||? for all v, y. Using Proposition D.1 and setting B = sup, ¢y, [0uin (w0, 0,)|,
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we have almost surely that:

~

F(WO) < max Eout(WOa v, y) = L.
lv|<BEyey
Therefore, for any w such that F(w) < F(w), we have |[wl||> < 7/c. Define 2 as the ball of radius
\//c centered at 0. Using the fact that VF = V.F in Proposition 3.1 and the representation in
Equation (4), it is clear from Proposition D.2 and Assumption (D) that VF is Lipschitz on {2 with a

deterministic constant L. It follows from standard results on gradient descent for nonconvex F with
Lipschitz gradient (see, e.g., [9, Theorems 4.25, 4.26]) that if we take 7 = 1/L, then almost surely:

o F(w;) < Flwp) and w; € Q forall ¢ > 0.
. VJ?(wt) —0ast — oo.

e min;—o, ¢ HV]?(wi) < ¢/+t+ 1forall t > 0, where € is a deterministic constant.

The corollary then follows by combining Proposition 3.1 and the uniform bound in Theorem 4.1. [J

Bilevel projected gradient descent. Considering the constrained (KBO) problem and assuming that
C is convex and compact, the projected gradient descent initialized at wy € C iterates the following

recursion wyy1 = e (wy — nV.F(wy)) for all ¢ > 0, where T denotes the orthogonal projection
onto C and 1 > 0 is the step size. The algorithmic requirements are the same as the gradient descent
algorithm, with the additional cost of computing the projection, which is typically cheap for basic
sets such as balls. In the constrained setting, the optimality condition should take the constraints

into account. To this end, we consider the gradient mappings G,,: w %(w — e (w — nVF(W)))
and G,): w — % (w—Tl¢(w — nV.F(w))) [10, Section 10.3]. This captures the stationarity of the
recursion, and any local minimum of 7 on C satisfies G,, = 0 for all > 0.

Corollary E.8 (Generalization for bilevel projected gradient descent). Consider Assumptions (A)
to (E) and fix X > 0. Assume further that K in (K/B\O) is almost surely definite, and that C is convex

and compact. Fix wy € C and let wyq = Me(wp — nVF(w;)), where 1) > 0 is the step size and
t > 0 is the iteration index. Then, there exist constants 1 > 0 and ¢ > 0 such that for any 0 < n <7
andt > 0, the following holds:

B[ in 1G] <+ <=+ A ) Bfimsw 6, @] <o =+ 22)).

Proof. We choose €2 = C. All iterates obviously remain in {2. Similarly as in the proof of

Corollary 4.2, we know that VF is Lipschitz and that F is bounded on 2 with deterministic
constants. It then follows from classical analysis on the nonconvex projected gradient algo-
rithm (see, e.g., [10, Theorem 10.15]), that for sufficiently small 1, we have almost surely that

< ¢/+/t+ 1 for a deterministic constant ¢ > 0, and that @n (wi) = 0 as

1 — oo. Using the fact that the orthogonal projection is 1-Lipschitz, (see, e.g., [10, Theorem 6.42]),
we also have for all w € Q:

min;—o,.. ¢ HGn(wi)‘

|Gy (w) = Gy(W)]| < [[VF(w) = VF(W).-
The result follows by combining Proposition 3.1 and the uniform bound in Theorem 4.1. O
F Maximal Inequalities for Bounded and Lipschitz Family of Functions
Let Z be a subset of a Euclidean space and €2 be a compact subset of R?. Denote by ®* Z the k-th

tensor power of Z, for any k > 1. Consider a parametric family 7 of real-valued functions defined
over Z and indexed by a parameter w € €2, i.e.,

T={Z23z—t,(2)eR|weQ}. (18)
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For a given probability measure p on Z, denote by Lo(u) the space of square p-integrable real-

valued functions. We denote by || f|p, , = Ep [f(2)?] ® the Ls(p)-norm of any function f € La(u).

For any € > 0, we denote by D (e, T, La(1)) the e-packing number of 7 w.r.t. Lo(x). The next
proposition provides a control on such a number under regularity conditions on the family 7.

Proposition F.1 (Control on the packing number). Assume that Q) is a compact subset of RY, that
the parametric family T defined in Equation (18) is uniformly bounded by a positive constant M,
and that there exists a positive constant L so that, for any probability measure pon Z, w +— t,,(2) is
L-Lipschitz for any z € Z. Then, there exists a positive constant c(Q) greater than 1 that depends
only on Q) and d so that, for any probability measure . on Z, the following bound holds for any
0<e< M:

max (L diam(Q), M) ) ¢ .

DT Lo()) < e(9) (

Proof. First using [40, Lemma 9.18] and [40, Paragraph 8.1.2], we know that the e-packing number
D (e, T, La(p)) is smaller than the §-bracketing number Ny (5,7, L2(x)). Hence, we only need to
control the bracketing number. To this end, we recall that the function w — t,,(z) is L-Lipschitz for
any z € Z, so that [71, Example 19.7] ensures the existence of a positive constant ¢({2) that depends

only on € for which the following inequality holds for any 0 < ¢ < Ldiam(2):
L diam(2) ) ¢

€

1< Ny (e, T, La(p)) < () (
Moreover, since the e-bracketing number is decreasing in e, it holds that:

. d
NMWPMWDS%&,T¢ngdm(Dm“mW7

for any ¢ > Ldiam(Q2) and e_ < L diam(2). Taking the limit when e_ approaches Ldiam(£2) yields
Ny (6, T, La(t)) < c(82) for any € > L diam(2). Hence, we have shown so far that for any e > 0:

: d
Ny (e, T La(p)) < ¢(Q) max <1, (Ldm(ﬁ)) ) .

€

Moreover, by noticing that max(1, Z4iam()y < max(M.L diam(%2))

that:

for any € < M, we further have

€ - €

- d
Ny (6, T, La(p) < ¢(Q) (max (M,l;dlam(Q))> .

Finally, recalling that D (e, T, La(p)) < Ny (5.7, L2(p)), we get that D (e, T, La(p)) <

. d
24¢(Q) (M) . The desired bound follows after redefining ¢(£2) to include the factor

24 (i.e., ¢(Q) — 2%¢(Q)). O
Theorem F.2 (Maximal inequality for degenerate, bounded, and Lipschitz
U-processes). Let k be either 1 or 2. Consider a parametric family T =
{®kZ S (21y..052k) P tw(z1,. 0 2) ER|w e Q} of real-valued functions over @FZ in-

dexed by a parameter w € Q, where Q is a compact subset of R%. For a given probability distribution
D over Z, assume that all elements t,, are degenerate w.r.t. D, meaning that:

E:p [tw(z)] =0, if k=1
E:zp [tw(zv 2)] =E:wp [tw(zv Z)] =0, VzeZ, if k=2
Furthermore, assume that all functions in T are uniformly bounded by a positive constant M
and that there exists a positive constant L so that w — t,(z1,...,2x) is L-Lipschitz for any
(21,...,2) € @ Z. Given i.i.d. samples (zi)1<i<n from D, consider the following U-statistic Uk:
1< :
EZ“W’ if k=1
Ukt = 1:11 n
1,0=1
i#j
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Then, there exists a universal positive constant c¢(§2) greater than 1 that depends only on § and d
such that for any p € {1,2}:

1
Ep [Sup ’U,]ftw|p] ’ < n_%c(Q) max (ML diam(Q2), MQ)% .
weN

Proof. Maximal inequality for degenerate U-processes. We will first apply the general result in
[67, Maximal inequality] which controls Ep [sup,,cq |UFt,,|] in terms of the packing number of

T . First note, by assumption, that the functions ¢,,(z1, . . ., 2 ) are uniformly bounded by a positive
constant M. Therefore, the constant function T'(z1,...,2;) = M is an envelope for T, i.e., T
satisfies T'(z1,. .., 2;) > Sup,eq |tw(z1, ..., 2)| forany (z1,...,2;) € ®" Z. The envelope T is,

a fortiori, square y-integrable for any probability measure 1 on ®*Z. Hence, we can apply [67,
Maximal inequality] with the choice 7" for the envelope function and set the integer m appearing in
the result to m = d to get the following bound:

o | (D (I T Eae))) de] . a9)

where I is a positive universal constant® that depends only on d and that we choose to be greater than
1, while 1, are suitably chosen probability measures on ®* Z that possibly depend on the samples
Z1,...,zn and other random variables, and 6, [|T[, 5 == sup,ecq [[tw|,, o- Here, the expectation
symbol in the right-hand side is over all randomness on which pu,, might depend. Note that the
original result in [67, Maximal inequality] is stated using a slightly different definition of the packing
number but which is still equivalent to the statement above in our setting’.

1T

1
P N
Ep {sup |U,Iftw|p} < nfng
we

In our setting, the envelope function is constant and equal to M, and by definition §,, < 1. Hence,
the inequality in Equation (19) further becomes:

5 1 1
Ep [sup IUfitw|p] <n *MTE [/ (D (eIITIIH 2T Lz(un))) de] . (20)
weN 0 "

We simply need to control the packing number D (e 17,27, LQ(M)) independently of the proba-
bility measure .

Control on the packing number. We have shown that the constant function T'(z1, . .., zx) = M
is an envelope for 7 which is, a fortiori, square u-integrable for any probability measure p with
IT]l,o = M < +oo. Moreover, the functions w + #y,(z1,...,2x) are L-Lipschitz for any

(21,...,2,) € ®FZ. We can therefore apply Proposition F.1 which ensures the existence of a
positive constant ¢(£2) greater than 1 and that depends only on €2 and d so that the following estimate
on the e-packing number of the class 7 w.r.t. L (1) holds:

D (e T, T Lz(u)) < ¢(Q) (max (Mhﬁ(m 1>>d (1)d, Vee (0,1]. (@)

€

A
Combining Equation (21) with Equation (20) yields:

1
» 1 1 1
Ep {Sup \U,’jtw\p] <n *MIE U (Ae )@ de] = n—ngAﬁ/ ¢ 2 de
weN 0 0

<2

< Qn_%I‘C(Q)ﬁ max (L diam(£2), MQ)% )

SThe constant I appearing in [67, Maximal inequality] depends only on k, p and m, i.e., T := g(k, p, m).

=

Since, we are only interested in k < 2 and p < 2 and m is fixed to d, we choose I' to be maxi < p<2 g(k, p, d)?,
so that it is the same in all our cases.
"In [67, Maximal inequality], the author considers a modified version of the e-packing number (call

it D(e, T, L2(u))) associated to Lo(u) but endowed with a normalized version of the standard norm

on Lo(p): ||fll, = ”;l‘ll‘:z. Both numbers are related by the following identity: D (e, 7, La(p)) =

D(e||T||, 2+ T, L2(n)), thus making the statement (19) equivalent to the original statement in [67, Maximal
inequality].
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where, for the last inequality, we used that Az < Asa = C(Q)ﬁ max (%m(m, 1) ? since A
is greater than 1. The desired result follows after redefining ¢(£2) as 2I'¢(2)2a which is a positive
constant that depends only on €2 and d. O

The following two propositions are particular instances of Theorem F.2 and will be used to obtain the
main bounds.

Proposition F.3 (Maximal inequality for empirical processes). Consider a parametric family T =
{Z3 2z t,(2) € R|w € Q} of real-valued functions defined over a subset Z of a Euclidean
space and indexed by a parameter w € ), where §) is a compact subset of R®. Assume that all
Sfunctions in T are uniformly bounded by a positive constant M and that there exists a positive
constant L so that w — t,,(z) is L-Lipschitz for any z € Z. Consider a probability distribution D
over Z and let (2;)1<i<n be i.i.d. samples drawn from D, then there exists a positive constant c(§2)
greater than 1 that depends only on 2 and d, such that for any integer p € {1,2}:

]EZND _7215 zz

Ep lsup ] < \/gc(Q) max(M L diam(§2), M?)7.

weN

Proof. The upper bound is a direct consequence of Theorem F.2. Indeed consider the family S of
functions of the form s,,(2) = t,(2) — Ezp [t,(Z)], for any z € Z. Then clearly, the process
Upsy =+ 31" | su,(2;) is degenerate of order k = 1, and the family S is uniformly bounded by
2M and is 2L-Lipschitz. Hence, by Theorem F.2, the following maximal inequality holds:

1

Ep {bup U sw|p] ’ < 2n*%c(Q) max (M L diam(Q), MZ)%
weN

We get the desired upper bound by redefining ¢(2) to contain the factor 2. O

Proposition F.4 (Maximal inequality for U-processes of order 2). Consider a parametric family
T={Z2xZ3(z,72)—t,(z7) € R|w e Q} of real-valued functions indexed by a parameter
w € Q, where Q is a compact subset of R? and Z is a subset of a Euclidean space. Assume that the
functions in T are symmetric in their arguments, i.e., t,(z,2") = t,(Z’, z). Additionally, assume that
all functions in T are uniformly bounded by a positive constant M and that there exists a positive
constant L so that w > t,(z,2") is L-Lipschitz for any (z,2') € Z x Z. Consider a probability
distribution D over Z and let (z;)1<i<n be i.i.d. samples drawn from D, and define the following
statistic:

Tw = E, 2 pab [tw(z, 2’) + — Z tw(zi, 25) ZEZND (z,2i)].
1,j=1

Then there exists a universal positive constant ¢(§2) greater than 1 that depends only on Q2 and d such
that:

D=

1
Ep [sup |Tw|:| < ﬁc(Q) max (ML diam(Q), M?)? .
weN

Proof. The proof will proceed by first decomposing 7, into a sum of a degenerate U-process and a
term of order O(%) The maximal inequality for degenerate U-processes from [67] will be employed
to obtain the desired bound.

Decomposition of 7,,. Consider the following function defined over Z x Z and indexed by elements
w e

Sw(z,2") =tw(z,2") = Bz [tw(2,2)] — Ezap [tw(Z, 2")] + Ez sopeb [tu(Z,2)] - (22)

By direct calculation, we decompose 7,, into two higher order terms and a third term, U2s,,, involving
S, which happens to be a U-statistic:

U?st
1 n 1 n n
= t t
S A 2 ) T 2 )+ g el )
i#] i#j
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Using the triangle inequality in the above equality and recalling that, by assumption, t,,(z, z’) is
uniformly bounded by a positive constant M, it follows that:

1 - 1O 2M
‘Tw| < |U72L$w| + m Z \tw(zi,zj)| + ﬁ Z |tw(Zi7Z¢)| < |U§Sw| + T
i,j=1 i=1
i#j

Furthermore, taking the supremum over w followed by the expectation over samples yields:

2M

Ep {sup |7'w|} < Ep {sup |U,2LSW|] + —. (23)
we we n

Hence, it only remains to control the first term in the above inequality. To this end, we will use a

maximal inequality for degenerate U-processes due to [67].

Maximal inequality for degenerate U-processes. We will first check that U2s,, is a degenerate
statistic for a given w € (). Simple calculations show that for any z in Z:

E:zwp [Sw(zv 2)] =E:;p [Sw(zv Z)] =0.

The above equalities precisely ensure that U2s,, is a degenerate U-statistic for D. Consider now the
family S = {Z X Z 5 (z,2') = s,(z,72') € R | w € Q}. We show that S is uniformly bounded
and Lipschitz which allows to directly apply the result stated in Theorem F.2, which is a special case
of the more general result in [67, Maximal inequality]. First note, by assumption, that the functions
t.(z, z") are uniformly bounded by a positive constant M. Hence, using Equation (22), it follows that
Su (2, 2') is uniformly bounded by 4M. Moreover, the functions w — t,,(z, ') are L-Lipschitz for
any z, 2z’ in Z. Hence, from Equation (22), we directly have that w — s,(z, 2’) is 4L-Lipschitz for
any z,z’ € Z. We can directly apply Theorem F.2 with k = 2 and p = 1 to S and get the following
maximal inequality:

1
Ep {sup |U72LSW|:| < 4n"'¢(Q) max (M L diam(Q), M?)* .
weN
We obtain an upper bound on Ep, [sup,,cq |7w|] by combining the above inequality with Equation (23),
then noticing that 2M < 2¢(€2) max (L diam(€2), M) so that:
1
Ep [sup ITw|:| < 6n~ 'c(Q) max (ML diam(€2), M?)* .
weN

Finally, the desired result follows by redefining ¢(£2) to include the factor 6 in the above inequality.
O

G Differentiability Results

The proofs of Propositions B.1 and B.2 are direct applications of the following more general result.

Proposition G.1. Let U be an open non-trivial subset of R%. Consider a real-valued function
0 (w,v,y) = L(w,v,y) defined on U x R x Y that is of class C? jointly in (w,v) and whose
derivatives are jointly continuous in (w,v,y). For a given probability distribution D over X x ),
consider the following functional defined over U x H.:

L(w, h) = Ep [((w, h(z),y)].
Under Assumptions (A) to (C), the following properties hold for L:
* L admits finite values for any (w,h) € U x H.

* (w,h) — L(w,h) is Fréchet differentiable with partial derivatives 0,L(w,h) and
OnL(w, h) at any point (w,h) € U x H given by:

OuL(w,h) = Ep [0,¢(w, h(z),y)] € RY,
OpL(w, h) = Ep [0uf(w, h(x),y) K (x,)] € H.
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* The map (w, h) — OpL(w, ) is differentiable. Moreover, for any (w, h) € U x H, its partial
derivatives aw nL(w, h) and 02 L(w, h) at (w, h) are Hilbert-Schmidt operators given by:
h) =
h)

( ) Ep [ E(wvh(x)’y) (l‘,)] EL(H,Rd),
( ) =Ep [812) (th(‘r)ay)K(l'v ) ® K(ZL’, )] € 'C(HaH)

Proof. Finite values. Fix w € i/ and h € H. We will first show that & is bounded on X'. By the
reproducing property, we know that |h(x)| < ||h[|,, /K (2, ) for any x € X'. Moreover, the kernel

K is bounded by a constant  thanks to Assumption (B). Consequently, |i(x)]| is upper-bounded by
|7|l;, /5 forany z € X.

Denote by 7 the compact interval defined as Z = [— [|h||,, /&, |15, v/K]. By Assumption (C),
the set ) is compact so that Z x ) is also compact. Moreover, we know, by assumption on ¢, that
(w,v,y) — £(w,v,y) is continuous on U X R x Y. Therefore, (v,y) — ¢(w,v,y) must be bounded
by some finite constant C' on the compact set Z x ). This allows to deduce that (z,y) — ¢(w, h(x),y)
is bounded by C for any (z,y) € X x ) and a fortiori D-integrable, which shows that L(w, h) is
finite.

Fréchet differentiability of L. Let (w, h) € U x H. Consider (w;, h;);>1 a sequence of elements
inU x H converging to it, i.e., (wj, h;) = (w, h) with (w;, h;) # (w, h) for any j > 0. Define the
sequence of functions r; : X x J — R for any (z,y) € X x Y as follows:

Tj(‘rvy) =

g(wj’hj(x)vy) - E(w7h(x)ay) - <8v£ (wvh(x)vy) K(Iv ')7hj - h>’;—[ - <aw£(w7h(x)’y>7wj - w>'

1(wjs hj) = (@, Al
24

We will first show that Ep [|7;(z,y)|] converges to 0 by the dominated convergence theorem [62,
Theorem 1.34]. By the reproducing property, note that ¢(w, h(z),y) = l(w, (h, K(x,))3,y). Hence,
since / is jointly differentiable in (w,v) for any y, it follows that (w, h) — €(w h(z ), y) is also
differentiable for any (z,y) by composition with the evaluation map (w, h) — (w, (h, K(x,))#
which is differentiable. Hence, the sequence r;(x,y) converges to 0 for any (x,y) € X x ).
Moreover, by the mean-value theorem, there exists 0 < ¢; < 1 such that:

ri(e,y) =
((0ut (w5, hj(2),y) — Ol (w, h(z),y)) K(z,-), hj — h>?—t — (0l (@5, h(2),y) — Ol (w, h(z),

y)awj

—w)

1(wjs hj) = (w, Al
where (@0j, h;) = (1 — ¢;)(w, h) + ¢j(wj, h;). We will show that 7;(x, y) is bounded for j large
enough. We first construct a compact set that w1ll contain all elements of the form (w;, h;(x),y) and
(@;, h;(z),y) for all j large enough. Since w is an element in the open set U/, there exists a closed
ball B(w, R) centered at w and with some radius R small enough so that 5(w, R) is included in .
For all j large enough, w; and @; belong to B(w, R) as these sequences converge to w. Moreover,
h; and h; are convergent sequences. Consequently, they must be bounded by some constant B. By
the reproducing property, and recalling that the kernel K is bounded by « by Assumption (B), it
follows that max(|h;(z)|, |h;(z)|) < Bk. Consider now the set W := B(w, R) x B1(0, Bk) x Y
which is a product of compact sets (recalling that ) is compact by Assumption (C)), where 51 (0, Bx)
is the closed ball in R centered at O and of radius Bx. For j large enough, we have established
that (w;, hj(z), y) and (@;, h;(z),y) belong to W for any (z,y) € X x ). Since, by assumption
on £, Oyl(w,v,y) and 9,¢(w,v,y) are continuous, they must be bounded on the compact set W
by some constant C. This allows to deduce from the expression of 7;(x,y) above that r;(z,y)
is bounded, and a fortiori dominated by an integrable function (a constant function). We then

deduce that Ep, [|r;(z, y)|] converges to 0 by application of the dominated convergence theorem [62,
Theorem 1.34].

Recalling Equation (24), Ep [r;(z, y)] admits the following expression:
Ep [rj(z,y)] =

L(w;, hj) — L(w, h) — Ep [(9ul (w, h(@),y) K(2, "), hj — h);,] — (Ep [0ul(w, h(@),y)],wj —w) .

1(wj> hj) = (w, Bl
(25)
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The convergence to 0 of the above expression precisely means that L is differentiable at (w, h)
provided that the linear form g +— Ep [(0,¢ (w, h(x), y) K(z,-), g)4,] is bounded. To establish this
fact, consider the RKHS-valued function (z,y) — 0, (w, h(x),y) K(z, -). This function is Bochner-
integrable in the sense that Ep [||0,¢ (w, h(z),y) K (x,-)||,,] is finite [25, Definition 1, Chapter 2].
Indeed, we have the following:

En (1.0 (@, h(2), ) K (2, )5 = Bo |08 (@, h(), )| Kz, 7)]
< V/REp [|0,¢ <w,h<x>,y>u < oo,

where, for the inequality, we used that (z,y) — 9,¢(w, h(x),y) is bounded as shown previously.
Consequently, Ep [0,¢ (w, h(x),y) K (x,-)] is an element in H satisfying:

<EIDJ [avg (w7 h(x)a y) K(Iv )] 7g>'H =Ep [<av£ (wv h(x)v y) K(‘ra ')79>7—[] ﬂVQ €H.

The above property follows from [25, Theorem 6, Chapter 2] for Bochner-integrable functions that
allows exchanging the integral and the application of a continuous linear map (here the scalar product
with an element g). The above identity establishes that g — Ep [(0,¢ (w, h(x),y) K(x,-), g)4] is
bounded and provides the desired expression for Oy, L(w, h). The expression for 9, L(w, h) directly
follows from the last term in Equation (25).

Fréchet differentiability of 05, L. We use the same proof strategy as for the differentiability of L.

Let (w,h) € U x H. Consider (wj, hj)j>1 a sequence of elements in U x H converging to it,
ie., (wj,hj) = (w,h) with (wj, h;) # (w,h) for any j > 0. Define the sequence of functions
551 X x Y — H as follows:

[(wjs hy) = (@, W)l (2, y) = (0ol (wj, i (x), y) = Dol (w, h(z), ) Kz, )
— (w5 = w) " 5w, hlw), YK (2, ).
We will first show that Ep [||s;(z, y)|,,] converges to 0 by the dominated convergence theorem

for Bochner-integrable functions [25, Theorem 3, Chapter 2]. By the reproducing property, note
that 0,¢(w, h(z),y) K (z,-) = 0ul(w, (h, K(z, )1, y) K (z,-). Hence, since (w,v) — 0,l(w,v,y)

is jointly differentiable in (w, v) for any y, it follows that (w, h) — 9,€(w, h(x),y) K (x,-) is also
differentiable for any (z,y) by composition with the evaluation map (w, h) — (w, (h, K(x,))x
which is differentiable. Hence, the sequence s;(z,y) converges to 0 for any (z,y) € X x ).
Moreover, by the mean-value theorem, there exists 0 < ¢; < 1 such that:
H(wj’ hj) - (W7 h)” Sj(x7 y) 82( (wJ’ J($)7y) K(‘T7 ) ® K(CL‘, ) (hj - h)

+ (wj —w) " 02 0@, (@), y)K ()

— 9 (w,h(x),y) K(z,) ® ( ) (hy —h)

- (wj - w)—r 8i,v€(w h( ) z, )7
where (@, hj) = (1 — ¢;)(w, h) + ¢;(w;, h;). Using the same construction as for the Fréchet

differentiability, we find a compact set VW containing all elements (w;, h;(z),y) and (@;, hj (), y)
for any (z,y) € X x Y and all j large enough. On such set, 93/(w, v, y) and 02 ,¢(w,v,y) are
bounded by some constant C'. Consequently, we can write:

[(wjs ) = (w, B)[ s (2, 9)llq S2C (K (2, ) @ K(,-) (hy = h)lly, +2C [|w; — Wl [ K (2, )]l
<20k ||y — b, 4+ 20VE ||lw; — w -
This already establishes that s;(z, y) is bounded so that Ep [[|s;(z, )|, converges to 0 by appli-

cation of the dominated convergence theorem. Recalling Equation (26), Ep [s,(x, y)] admits the
following expression:

|(ws, hy) = (w, h)|| Ep [sj(x,y)] =0nL(wj, hj) — OpL(w, h)
— Ep [02( (w, h(z),y) K (z,-) ® K(x,") (hj — h)]
— (wj —w)  Ep [82 6w, h(z),y) K (z,")] .

40



The convergence to 0 of the above expression precisely means that L is differentiable at (w, h)
provided that: (1) Ep [92 ,¢(w, h(x),y)K (x,-)] is an element in H?, and (2) the linear map
g — Ep[020(w, h(z),y) (K(z,-) ® K(z,))g] is bounded. Using the same strategy to estab-
lish Bochner’s integrability of (z,y) — 0,¢ (w,h(x),y) K(x,-), we can show that (x,y) —
92 0 (w, h(x),y) K(z,-) is also Bochner-integrable so that Ep [02 ,¢(w, h(z), y) K (,-)] is in-
deed an element in H%. This also establishes the expression of 9, , L(w, h). Similarly, we consider
the operator-valued function ¢ : (z,y) — 92¢ (w, h(z),y) K (z,) ® K (x,-) with values in the space
of Hilbert-Schmidt operators on 7. The Hilbert-Schmidt (HS) norm of such function satisfies the
following inequality:
Ep [|056(w, h(z),y) K (z,) ® K(z,)| 4] = Ep [|056(w, h(z),y)| K(z,2)] < kC < +o0.

Therefore, the function ¢ is Bochner-integrable, so that Ep [02¢(w, h(z), y) K (z,-) @ K(z,-)] isa
Hilbert-Schmidt operator satisfying:

Ep [856((*)7 h(x)v y)K(Iv ) ® K(Iv )} g= Ep [31216 (wv h(I), y) (K(xv ) ® K(xv ))g} 7v9 EH.

The above property follows from [25, Theorem 6, Chapter 2] for Bochner-integrable functions
that allows exchanging the integral and the application of a continuous linear map (here the scalar
product with an element g). Hence, from the above identity, we deduce the desired expression for
O L(w, h). O

H Auxiliary Technical Lemmas

Lemma H.1. Let A and A’ be two bounded operators from H to R%, and B and B’ be two bounded
and invertible operators from H to itself. Assume that B > \1dy and B’ > M\1dy. Then, the
following inequalities hold:

1Al 1
VI IB = B'|l,, + 3 A - A
[A"(B) o, < ATHIA gy -

[AB~H = A'(B) 7 <
op
JAB™H| < A7H[|A]]

op’?
op’?

Proof. By the triangle inequality and the sub-multiplicative property of the operator norm || - ||op, we
have:

[AB~ = A(B) |, < [[ABTH = A(B) |, + [|AB) T = A(B) 7|,
=[lA(B™ = B))|,, + (A=A B,
<Al [|B™ = (B, + 14 = A%l [|(BY) ],
= [|Allop [[B7 (B = B) (B) |, + 14 = Allo, [(BY ],
<N Allgp [B™ oy 1B" = Bllgp [(B) I, + 14 = A'llo, [[(B) ], -

27)
Since B > A1dy and B’ > A1dy, we obtain:
1 1
-1 —1
15, <+ and [B)7Y),, <
Substituting these into Equation (27), we get:
1Al 1
-1 ~1 op
HAB _A/(BI) Hop < A2 HB_B,||op+XHA_A,||op'
This proves the first inequality. The remaining two inequalities follow directly from the sub-
multiplicative property of the operator norm || - ||op and the assumptions B > AIdy and
B’ > \1dy. O

Lemma H.2. Let f : H — R be a \-strongly convex and Fréchet differentiable function. Denote by
h* € H its minimizer. Then, for any h € H, the following holds:

. 1
[h =Ry < N 10nf (Rl -
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Proof. Leth € H.
Case 1: b = h*. The proof is straightforward.

Case 2: h # h*. Given that f is A-strongly convex, we have:

FB) = F(0*) = @f ()b~ %) 5 = B

and £(h*) — F(h) = (OnF(R), b — )y + 5 b — BB,

After summing these two inequalities, noticing that 9y, f(h*) = 0, and rearranging the terms, we

obtain:

(Onf(h),h =)y = XN — b*3,.

After using the Cauchy-Schwarz inequality, we get:

100 F (R) |13 I1h — 2|15, = XA — R[5,

Dividing by A ||h — h*||,, # 0 concludes the proof.

Lemma H.3. Let X be a subset of RP, ) be a subset of RY, and D be a probability distribution over
X x Y. Given i.i.d. samples (x;,Yy;)1<i<n drawn from D, consider a function g : X x Y — R of

class C" such that the operator A : H — H defined as:

n

A= By s oo, 0)K (5, @ K, )] = 3 gl y) K, ) @ Kz )
i=1

is Hilbert-Schmidt. Then, the following holds:

n

1
2
”A”HS :E(z,y),(x’,y’)wﬂ)@]l)) [g(x,y)g(m/,y/)KQ(x,x’)} + E Z g(xuyz)g(%yil/g)KQ(xu%)

i,5=1

= 2N Bt 9l wda (e, ) K2 1)
=1

S g(@iy) K (2, -) @

1
n

Proof. Define s = E( )~ [9(z,y)K(z, ) ® K(z,-)] and 5
K (x;,-). We have:

2 4112 2 112 .
Al = lls = 3llus = lIsllus + 18llrs — 2 (s 8)us - (28)
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Next, we compute each of the following quantities: ||s||12{s, ||§||?{S, and (s, §) g, separately. Simple
calculations yield:

2
||5||?—IS = ||]E($,y)~]D) [Q(I y)K(Ia ) ® K I, . ||HS
<E(r y)~D [g( K LC, ®K(£E, )} vE(m/,y/)N]DJ [g(x'7y')K(x’7~) ®K(x/a')]>HS

= ]E(I y),(z’,y’ ) ~DRD |:g <K($7 ) ® K(Z‘, '),K(.ﬂ?/, ) ® K(xla )>HS:|
= E( ;U) (:v 71/ ~]D)®]D> |:g K2(l',$/):|,
[HF= 3 Zg(fﬂi»yz‘)K(xu')(@K(%w)
o= HS
= % <Zg($i7yi)K($i,~) © K(xi,-), Y 9(ws,y;) K (x5,) @ K, ')>
i=1 j=1 HS
= % Z 9(ws,y:)g(xj,y5) (K(z,) @ K(x,-), K(zj,-) @ K(x5,")) g
= % Z 9(@i, yi)g(ag,y5) K2 (23, 25),
(s,8)ps = <E(:1:,y)~]DJ l9(z,y)K(z, ) ® K(z,-)], % Zg(ﬂﬁi,yi)K(l‘i, ) @ K(xi, ')>
=1 HS

=1

1< )
After substituting the obtained results into Equation (28) and rearranging, we obtain:

1 n
I Allfis =Ez,y),ay')~DeD [g(w,y)g(x’,y’)KQ(xﬂ:’)} +3 > 9w yi)g(a, y) K (s, )

ij=1

_*ZEw,uw@{ (i, yi)g(x ,y)KQ(:c,x,-)].

I Details on Experiments and Additional Numerical Results

In this section, we provide details on the experimental setting used to obtain Figure 2 and include
additional numerical results in Appendix [.5. We recall the formulation of the instrumental variable
regression problem introduced in Section 2.2:

: oy 1 x
min F(w) = Lou(w, 1) = 5By [IH5() = o]

weRd

. 1 2 A
s.t. hY =argmin L;,(w, h) = gE(mﬁt)N]p “h(x) — wT¢(t)| ] + 5 Hh||§_t,
heH

where ¢(t) = (¢1(t),...,pa(t))T € R?is the feature map. We begin by deriving a closed-form
expression for h,, (the empirical counterpart of /), which is key to obtaining closed-form expressions
for F(w) and VF(w), and thus accurate approximations of F(w) and V.F(w).

43



I.1 Closed-form expression for he,

Let w € R?. By the first-order optimality condition, the gradient of Zm with respect to its second

argument must vanish at iLw, ie., 6‘hzm(w, ilw) = 0. Proposition B.1 implies that izw satisfies the
following equation:

LS [t T g i, )] + X =0,

with (z;,t;)1<i<n being n samples drawn from the distribution P. After using the reproducing
property of the RKHS H and rearranging the terms, we arrive at the following closed-form expression

for h,,:

he = (5710)Tw e A,
where 33\ = 3 + AIdy, is an operator from H to H with & = LS K(%,) ® K(x;, ) being
the empirical covariance operator and & = 1 ZZ 1Ot K (24, -) = (</131, . ‘5(1) € H4. Next,
we compute a closed-form expression for Z <I> which can be determined as the solution b =
(bl, cee bd) € H? of the following minimization problem:

o 1 ~ ~
by = argmin =b; b, — b ®;, forany 1 <1 <d.
bieH 2

After expanding the terms and rearranging, this minimization problem is equivalent to:

by = argmin W, (by(x1), . .., bi(zn), bi]l5,), forany 1 <1 <d,
beH

where, for any eq,...,en,e € R, Uy(er,...,en,€) = 5= > je? — L3570 y(ti)e; + 3€* By

the representer theorem, for any 1 <1 < d, b; can be expressed as:

b = Z i1 K(s,),
i=1

where &, = (€1,...,€,,) € R" satisfies:

1 1 A
¢; = argmin ¥, ([Kcl]l, el [Kcl}n,cl—rKcl) = —cl—r K2%¢ —7FITKCZ +— clTKcl,
c ER™ 2n n 2

where F; = (¢(1), ..., 1(tn)) " € R™. By the first-order optimality condition, we have:
Ve, 1) ([K et [Kedn &) K él> — 0, which results in & = (K +nA\L,xn) " F, € R™.
Using this, we obtain:
by=¢, (K(x1,"),...,K(xn,-))", forany 1 <1< d, and thus: h, = b' w.

Now that we have obtained a closed-form expression for h,,, we can express 7 (w) and VF(w) in
closed-form, as we will see next.

1.2 Plug-in estimators for 7 (w) and V.F (w)

Let (Z;,7;)1<j<m be m samples drawn from Q and w € R. We have:

o= g 35 ) =

where B = [b(Z1),...,b0(@m)]T € R™ @ and§ = (f1,...,5m)" € R™. Forany 1 <1 < d and
1 < j < m, we have:

bu(#;) = [ (KAL) ™ K]
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As a consequence, we obtain:
. _ N AT [—T
b(is) = (bi(@,),,ba(@))T =€ [K'] R,

where C = [&1,...,¢4] = (K+nAl,xn) 'F € R™4 with F = [Fy,...,Fy] € R"*?. This
implies that B = K C € R™*9, and hence:

= —w/(KC)TKCuw—

F) = 5 [R5 = 5 1
2m m

T A 1.
5 v KCw+ —|yll>. (9
m 2m

On the other hand, using Appendix C, we get:

VFE(w) = %GT K' (K Cuw — y) = % [(K C)TKCw— (K G)Ty} eR:L (30)
The exact expressions of F(w) and V.F(w) involve expectations and are therefore intractable to
compute analytically. A natural approach is to approximate these quantities using their plug-in
estimators F(w) and V.F(w), evaluated with a very large number of inner and outer samples,
n and m. However, this approach quickly becomes computationally and memory-intensive. In
particular, storing the kernel matrices K and K requires O(n?) and O(nm) space, respectively.
Moreover, computing the inverse (K +nAl,»,) " incurs a cubic time complexity of O(n?), which
is prohibitive for large-scale applications. To alleviate these computational bottlenecks, potential
strategies rely on classical techniques in kernel methods such as Random Fourier Features (RFF),
which approximate kernel functions in a finite-dimensional feature space and enable more efficient
gradient computations [60], and Nystrém approximations, which mitigate the computational burden
of full kernel matrices by using a low-rank approximation of the kernel [75]. In our experiments, we
leverage the closed-form expressions of the plug-in estimators, and replace the kernel evaluations
with their approximations via RFF. This enables us to construct efficient and scalable approximations
of F(w) and V.F(w), while significantly reducing both the memory usage and the computational
cost. Our approach will be discussed in the following.

I.3 Scalable approximations for 7 (w) and VF(w) via random Fourier features

Random Fourier Features (RFF) provide a way to approximate shift-invariant kernels (i.e., kernels
that satisfy K (z,2’) = G(a — ') for some function G : X — R) by mapping the data into a
randomized feature space. To avoid the high computational burden of building the full kernel matrix
from all pairwise kernel evaluations, RFF use a randomized feature map v : X — RP, with D being
the number of Fourier features, to approximate the kernel as follows:
K(z,2') = (x)"(a’), foranyz,2’ € X.
Now, we derive the expression of the feature map . Let z, 2’ € X. By Bochner theorem [16], we
have that:
1

/ iw ! (z—z’ 1 . /
K(Z‘,l‘ ) = WEWNG(W) |:€ ( ):| = WEwwé(w) [COb(WT(Jj - ))] ) (31)

where G is the Fourier transform of G. For any b € R, the following product-to-sum identity holds:
2cos(w ' x+b)cos(w' 2’ +b) =cos(2b+w' (z+ )+ cos(w ' (z —a')).
In particular, when b ~ U(0, 27) (the uniform distribution over [0, 27]), we get:
Epz4(0,27) [2c08(W ' @+ b) cos(w ' 2’ + b)] =Epr(0,27) [cO8(2b + W (2 + 2'))]
+ cos(w ' (z — z')).

However, we have:

1 2m
Epmz(0,27) [cO8(2b + W (z +2'))] = - cos(2b+w ' (z + ') db
T Jo
1 _
= E[Sin(% +w' (z42)))=2" =o0.
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Thus:

Epn4(0,27) [2cos(w " @+ b) cos(w ' 2’ 4+ b)] = cos(w ' (z — 2')).
Substituting this back into Equation (31), we arrive at:
K(z,2')=E,, b Gw) b (0,27) [\/QCOS(WT x4+ b)vV2cos(w' &’ + b)] .
2m)P

Using D samples wq,...,Wp ~ ﬁ(}(w) and by, ...,bp ~ U(0,27), we obtain by Monte Carlo

estimation:
2 2 [2
Z ( = cos(w] z+b; )) ( Dcos(wl—-'—xlﬁ—bi)) .
=1

2
Y(x) = \/Bcos(Wa:—i—b), where W = (wy,...,wp)' € RP*Pandb= (by,...,bp)" € RP.

In practice, one typically chooses D < n and D < m, which reduces the space complexity of
storing K from O(n?) to O(nD), and that of storing K from O(nm) to O((n + m)D). This results
in significant computational and memory savings. Using the RFF approach, the two kernel matrices
K and K can then be approximated as:

K~=Z="and K~ ==",
where 2 = [(x1),...,9(xn)]T € R™P and 2 = [1h(71),...,¢%(Zm)]T € R™*P. A common

term in Equations (29) and (30) is K C, which can be approximated using the push-through identity
as follows:

=~ 1
KC~E2' (227 +nMlyxn) F=E(E'E+nApup) E'FeR™
Here, instead of inverting a matrix of size n x n, we invert a matrix of size D x D, which leads

to significant computational savings in time, especially when D < n. Consequently, using this
approximation, we get:

1 . 1 1
F(w) z%wTJTETEJw—m TITETy +%|Iy\|27

This implies that:

-1

VF(w )NE {JT”T”JM JTETy},

where J = (272 + n)\ILDxD)_l ETF € RP*4 As mentioned earlier, a very large number of
samples n and m is required to obtain accurate approximations of F(w) and V.F(w) using the

RFF approach. To cope with the issue of storing the two matrices = € R"*? and Z € R"™*P in
memory, we implement this method in blocks More premsely, we divide our data (z;, ¢; )1<Z<n and

(%5, y])1<J<m into blocks, then compute =" =, ZTZ, 27 F, 2"y, and ||y||? as follows:

Zw z)(z) =Y Y @) = EfEp e RPP,

—~T
=
[l

[I]

BeBzeB BeB
=TE Z¢ ) =3 Y w@e@ " = Y EfEs e ROXD,
BeBicB BeB
ETF:Z¢($2)[¢1(t2),,QI)d Z Z r(/} "~7¢d ZHTF GRDxd
=1 BB (z,t)eB BeB

A Zw =Y. > v@®i=) ElypeR”,
BeB

BeB (z,5)eB
1% = Z I71%.
BeB

where B denotes the set of blocks, and the subscript B indicates that the corresponding quantity is
computed using only the data contained in block B. These block-wise computations make it possible
to precisely approximate F(w) and V.F(w) in a scalable manner. As a result, we can efficiently
approximate both F(w) and V.F(w) through their plug-in estimators when choosing large sample
sizes n and m.
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1.4 Additional details on the experimental setup

We use the JAX framework [18] to run our experiments on an NVIDIA RTX 6000 ADA GPU. The
experiments take approximately 15 hours to complete.

Choice of the kernel. In our experiments, we consider the Gaussian kernel defined, for any z, 2’ € X,
lz—a" |2 . . .
as K(z,2') = e~ 2.2 , where 0 > 0 is the bandwidth parameter controlling the smoothness.

Since the Gaussian kernel is translation-invariant, Bochner’s theorem is applicable. In this case, using

N

the same notations as in Appendix 1.3, we have G(z) = e~ 207 , for any z € X. Its Fourier transform
~ ~ P 2 w 2
G is then given by G(w) = (2m0?) % e~ =i

, forany w € R%. Asa consequence, we obtain:

2

N | B _ePw)? 2\ 2 _oPwy? 1
—(Qﬂ)PG(W) = @y (27T0' ) e 2 (02> e 2 _N< pxp) )
which implies that w1, ..., wp ~ N (0, 51,x,).

Choice of the statistical model and hyperparameters. We setp = 3,d =4, A = 0.01,and 0 = 0.2.
We generate synthetic data as follows:

p~ Py t=2L z4e), y=w o) +e

where € ~ N(0,0.025), w* ~ U(0,1)4, and ¢(t) = (sin(t +1),...,sin(t +d)) ". We consider two
cases for the distribution P, of the instrumental variable x: (i) a p-dimensional standard Gaussian,
ie., P, = N(0,1,x,), and (ii) a p-dimensional Student’s ¢-distribution with degrees of freedom
v € {2.1,2.5,2.9}. All random variables are fixed across runs for reproducibility.

I.5 Additional experimental results

Here, we retain the same experimental setup as in the main paper and extend the analysis by providing
additional experimental results in the scenario where both m and n vary simultaneously over the
range 100 to 5000. In Figure 3, we visualize the results using heatmaps for four key quantities:
| F(wo) — Flwo)l, IVF(wo) — VF(wo)ll, [|VF(wr)l], and min;—¢ 7 ||VF (w;)], with n on the
z-axis and m on the y-axis. We report the results only for the case where the instrumental variable
z is sampled from a p-dimensional standard Gaussian, since the cases where x is sampled from a
p-dimensional Student’s ¢-distribution with degrees of freedom v € {2.1,2.5,2.9} exhibit similar
trends. From the heatmaps, we observe that the lowest errors across all four metrics occur along the
diagonal of the plots, i.e., when m = n. This pattern suggests that matching the number of samples in
the two dimensions leads to more accurate estimation of both the objective function and its gradient,
as well as improved convergence behavior during optimization.

Distribution of the instrumental variable: standard Gaussian

|IVF(wo) — VF(wo)" |VF(wp)|

g
1000 1000
5000 5000
5000 5000

IF(wo) — Flwo)| pin V@Ol

. i
5000
5000

500 1000

500 1000

Figure 3: Illustration of gradient descent on (KBO) for the instrumental variable regression task using
synthetic data, with an instrumental variable sampled from a standard Gaussian distribution. The logs
of the means of the four quantities across 50 runs are displayed.
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